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The information-theoretic (IT) approach to chemical bonds, based upon the molec-
ular probability-scattering channels in orbital resolution, is developed to cover both the
overall promotion of atomic orbitals (AO) and the partial communication systems due
to typical intermediate stages of reconstructing the system electronic structure, due to
the orbital hybridization, orthogonalization, mixing into the molecular orbitals (MO),
etc. The geometric and physical orbital promotion channels are distinguished, with the
former taking into account solely the elementary channels due to the orbital-mixing,
and the latter additionally including the MO-occupation term, which effectively pro-
jects-out the orbital promotion via the occupied MO only. This IT development gen-
erates the complementary descriptors of the molecular communication channel, viz., its
conditional entropy (IT-covalency) and mutual-information (IT-ionicity), which add up
to the total IT bond-order. These components provide a transparent description of the
covalent/ionic competition for the valence electrons of constituent atoms. Their orbi-
tal-promotion contributions, from the elementary sub-channels reflecting the familiar
intermediate stages of the bond-formation process, offer a novel information-scattering
perspective on the relative roles played by these partial transformations of orbitals in
shaping the resultant entropy/information descriptors of the system chemical bonds.
The combination (grouping) rules for the consecutive and parallel arrangements of
the elementary sub-channels are summarized and the stage-additivity of the IT bond-
descriptors in the molecular sequential cascade of the elementary sub-channels for the
intermediate sets of orbitals is examined in a more detail. A distinction between the
molecular information channels describing the separated atoms and the free-atoms in
the system atomic promolecule, respectively, is stressed and their entropy/information
descriptors are briefly summarized. The associated difference descriptors of the over-
all IT bond-orders with respect to the promolecular reference are introduced and sim-
ilar displacement measures are designed for the molecular promotion of intermediate
orbitals. The illustrative results for the simplest model of a single chemical bond orig-
inating from an interaction between two overlapping atomic orbitals are presented. In
particular, the bond-increments due to the orthogonalization and de-orthogonalization
sub-channels of the overall AO-promotion cascade will be investigated.

∗ Throughout the paper P denotes a scalar quantity, P stands for row vector, and P
represents a square or rectangular matrix.
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1. Introduction

The information-theory (IT) [1–4] has been shown to generate a novel class
of the entropy/information descriptors of chemical bonds in molecular systems,
including the valence numbers of bonded atoms, the overall IT bond multiplici-
ties and their covalent and ionic components [5–18]. This IT approach provides
a complementary, information scattering (flow) perspective on the familiar cova-
lent and ionic bond components, which was shown to be in a general accord
with the chemical intuition. In several illustrative orbital models and π -electron
systems these communication channels were shown to give rise to the IT bond-
orders which compare favourably with bond indices from the molecular orbital
(MO) theory.

The IT description was shown to give a transparent account of the compe-
tition between these two bond components, which also accords with the chemi-
cal intuitive expectations. The resulting entropy/information indices of chemical
bonds have been shown to give rise to the dichotomous covalent and ionic com-
ponents, which conserve the overall bond-order in several model systems [6, 9,
14]. The communication theory also generates several alternative strategies for
determining the internal and external bonds of molecular fragments [7, 10, 11, 14].

In this communication theory approach to chemical bonds the molecular
system is interpreted as an information channel [2, 4], in which the molecular
or “promolecular” electron probabilities are “scattered” via the network of the
chemical bonds connecting the system constituent atoms [14], due to the sys-
tem occupied MO. The bond entropy-covalency (conditional entropy) descrip-
tor of such a molecular information channel then measures its average com-
munication “noise” reflecting the extra uncertainty in the distribution of the
system valence electrons due to their delocalization via the network of the occu-
pied MO. Accordingly, the bond information-ionicity (mutual information) index
measures the amount of information flowing through this communication sys-
tem, which survives against the this noise generated by the probability scattering
implied by this electron spreading throughout the molecule.

The MO description, against which one ultimately compares the alterna-
tive treatments of chemical bonds in molecules and their fragments, generates
the standard interpretation of the bond origin and provides useful measures of
its multiplicity (“order”), e.g., the so called “quadratic” valence indices [19–28].
It has been recently demonstrated [9] that the so called probability-partitioning
scheme gives rise within both MO and communication theories to similar trends
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in atomic contributions to the overall bond multiplicity and atomic valence-num-
bers in the simplest model of a single chemical bond, which results from an
interaction between two atomic orbitals (AO). This standard perspective usually
refers to AO of constituent atoms, the basis functions for majority of the quan-
tum mechanical calculations determining the system electronic structure, as the
starting point (source) of the bond-formation process. They define the associated
“promolecule”, consisting of the “frozen” (ground-state) atoms placed in their
respective positions in the molecule, which constitutes the standard reference for
extracting effects due to the chemical bonds, e.g., in the density-difference dia-
grams and the Hirshfeld (“stockholder”) partition of the molecular electron den-
sity into pieces attributed to bonded atoms [29]. They are usually expressed in
terms of some arbitrary functions, e.g., the elementary Gaussian- or Slater-type
orbitals.

Therefore, the AO framework, which constitutes the basis for the contem-
porary “language” of chemistry, also defines the canonical (standard) level of
resolution of the electron distribution in the communication theory of the chem-
ical bond. In view of this importance of the orbital description in the elec-
tronic structure theory, the molecular information channels in orbital resolution
have been introduced [16–18]. These communication systems reflect the molec-
ular scattering of the AO electron probabilities of the constituent non-bonded
atoms of the system promolecule, manifesting the bonded-atom promotion rela-
tive to the corresponding free atom reference, due to the presence of the remain-
ing AIM. Indeed, as a result of the electron delocalization throughout the system
chemical bonds, which are embodied in both the shapes of MO and their occu-
pations in the electron configuration under consideration, the AO are effectively
“promoted” to their effective occupations in the molecule.

The two main types of the orbital information channels have been identified
[17, 18]. The so called geometrical channels explore the molecular AO probabil-
ity scattering via the network of all (equally weighted) MO, both occupied and
virtual, while in the physical channels the chemical bonds are probed through
the occupied MO only [17, 18]. They generate the associated IT-measures of
the system covalent and ionic components. They both involve the conditional
probabilities of AO, given MO (or of MO, given AO), which directly follow
from the quantum-mechanical superposition principle as squares of the relevant
expansion coefficients. These elementary electron-delocalization sub-channels are
supplemented in the physical probability-scattering network with the relevant
MO-occupation sub-channel reflecting the actual MO occupations in the elec-
tron configuration under consideration.

More specifically, the molecular information system reflecting the “geo-
metric” AO-promotion involves a sequence (cascade) of the AO → MO and
MO → AO sub-channels, in which the initial (promolecular, input) probabilities
are propagated via all (equi-weighted) MO in the adopted AO basis set, both
occupied and virtual for the molecular electron configuration in question. This
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geometric (AO-mixing) probability-cascade, AO → MO(all) → AO, gives rise to
the entropy/information descriptors of the overall “rotation” of the MO-vectors
relative to those representing AO in the molecular Hilbert space. Therefore, they
provide the global IT measures of the AO promotion in the whole MO-space.
However, the physical probability scattering and the resulting AO promotion
in the molecule are determined only by the subset of the configuration occu-
pied MO, which solely determine the network of chemical bonds in the system.
The associated information cascade AO → MO(occupied) → AO determines the
resultant physical AO-promotion channel, which includes the effect of the actual
occupations of MO on the overall IT bond-order index and its covalent/ionic
components.

Extracting reliable entropic descriptors of chemical bonds in excited elec-
tronic configurations of molecular systems has also been tackled [15, 18]. An
adequate treatment of bond-multiplicities in excited electronic configurations
presents a challenge in the probability-based IT approach, since electron prob-
abilities do not reflect the relative phases of AO in the occupied MO, thus loos-
ing the “memory” about the MO nodal structure. The chemically acceptable
descriptors of bond-orders in such states must account for an expected reduction
of bond multiplicities upon electron excitations from the ground-state occupied
(bonding) to virtual (antibonding) MO, which effectively decrease the config-
uration overall “bonding” character. In a more recent development [18] this
has been achieved by supplementing the communication theory with the orbital
probability-conditioning schemes using appropriate occupation-weighted projec-
tions onto the relevant orbital subspaces.

The original, two-electron development [5–15] has explored the electron
communication links measured by the joint (conditional) probabilities of finding
one electron on the specific atom-in-a-molecule (AIM), given the specified atomic
location of the other electron. The molecular information channels in orbital
resolution are one-electron in character, since they explore the conditional prob-
abilities of a single electron. Therefore this one-electron description should be
distinguished from the previous IT bond-order measures of the molecular infor-
mation channels in atomic resolution [5–15], quadratic valence indices [22–28],
or the average Fermi-hole measures [30], which all probe the system joint two-
electron probabilities in atomic resolution.

The one-electron perspective of the orbital information systems is similar
to that adopted in the local Hirshfeld-channels [6, 29] and in the IT justifica-
tion [14, 16, 32–36] of the stockholder partitioning [36]. Indeed, the electron den-
sities of the Hirshfeld atoms have been shown to generate the unbiased AIM
components of the given molecular electron distribution which exhibit the small-
est information-distance (entropy deficiency, missing information) relative to the
corresponding free atoms of the system promolecule [32]. The unbiased orbital
contributions to electron distributions of these stockholder AIM have also been
established using a similar IT principle [16]. Finally, the IT partitioning has been
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extended to the molecular two-electron distributions (pair-densities), yielding the
effective electron densities of the associated two-electron stockholder AIM
[14, 34, 37, 38].

However, several issues of the orbital communication theory of the chemi-
cal bond still await further investigation. For example, one would like to under-
stand, how the intermediate stages of the bond-formation process, e.g., the AO
orthogonalization and hybridization, which are often invoked in the chemical
interpretation of bonding effects, influence the resultant scattering of orbital
probabilities in molecules. The combined channel of the AO-promotion appears
as the sequential series (cascades) of the probability/information scatterings in
elementary stages involving various intermediate sets of orbitals. Their relevant
sequences also define the effective information channels for the molecular pro-
motion of electrons occupying these orbitals, in a similar manner to that used
to generate the physical promotion cascade for AO. This is in contrast to the
partial sub-channels discussed elsewhere [7, 10, 14]. Indeed, the molecular system
constitutes the parallel arrangement of such communication systems of molecu-
lar fragments.

It is a main purpose of this work to examine in a more detail the role
played by the intermediate orbitals, which are part of all ab initio calculations
of the molecular electronic structure in the AO basis set. The grouping rules for
combining the entropic descriptors of sub-channels into those of the system as a
whole will be reexamined, for both sequential and parallel cases. The difference
approach to bond indices of the elementary and the orbital-promotion communi-
cation systems will be developed and the stage-increments of the IT bond indi-
ces will be introduced. The illustrative application will examine the role of the
AO-orthogonalization. This will be done analytically using the simplest model
of a diatomic consisting of two valence electrons occupying two overlapping AO.
Throughout the paper the entropic quantities are reported in bits, corresponding
to the base 2 in the familiar logarithmic measure of information [2–4].

2. Overall promotion of orbital probabilities in bonded atoms

In what follows the real AO, the basis functions for the typical Self-
Consistent Field (SCF) calculations of the molecular electronic structure, will
be identified by indices (k, l), while their symmetrically (Löwdin) orthogonal-
ized analogs (OAO) will be indexed by (k̃, l̃). The MO will be similarly distin-
guished by indices (i , j), while other subscripts, e.g., (n, m) or(m̃, ñ), will be used
to denote intermediate sets of orbitals and their orthogonalized variety, respec-
tively.

The electron occupation numbers N = {Nk} of AO χ ={χk} are modified
in the molecular ground-state relative to the corresponding free-atom values
N0 = {N 0

k } characterizing the iso-electronic “promolecule”, due to electron delo-
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calization and/or charge transfer (CT) via the system chemical bonds. This
physical promotion of bonded atoms also affects the associated AO probabili-
ties, Pχ ={Pk = Nk/N } �= P0

χ = {P0
k = N 0

k /N 0}, where the overall number of elec-
trons N = ∑

k Nk = N 0 = ∑
k N 0

k . As a result of the AO mixing into the molecu-
lar orbitals (MO), ϕ=χC = {ϕi }, where C = {Ck,i } groups the LCAO MO coeffi-
cients, the system occupied MO give rise to the displaced effective occupations of
AO in atoms-in-molecules (AIM), and to the concomitant redistribution of elec-
tron probabilities. It further implies the associated changes in the entropy/infor-
mation descriptors of the system electronic structure in the AO resolution, which
can be used as probes of the system chemical bonds. Indeed, the effective “scat-
tering” of electrons among all basis set functions is tantamount to the effective
promotion of AO and readjustment of the information contained in the molecu-
lar electron distribution among the system AO, compared to that characterizing
the initial (promolecular) AO occupations.

In this section we shall first briefly outline the molecular communication
systems in orbital resolution, which describe the flow of information accompany-
ing the geometrical and physical promotion of AIM. The associated IT measures
of the system bond-orders will then be summarized, including the complemen-
tary indices of the of the conditional-entropy (IT-covalency) and mutual-infor-
mation (IT-ionicity). These quantities respectively reflect the extra information
“noise” created by the electron delocalization via the “communication” net-
works determined by either all MO (geometrical promotion) or their occupied
subset (physical promotion), respectively, and the corresponding amounts of
information flowing through such orbital channels. The overall AO-promotion
channel, reflecting the resultant effect of the probability scattering through the
system MO will be expressed as the corresponding cascade involving the elemen-
tary geometrical AO → MO and MO → AO sub-channels, as well as the rele-
vant occupational MO → MO sub-channel. Similar information cascades and the
resultant orbital promotion systems will be defined for all intermediate stages in
adjusting the system electronic structure, e.g., the orbital hybridization, orthogo-
nalization, mixing into MO, etc.

It directly follows from the familiar superposition principle of quantum
mechanics that the squares of the moduli of the LCAO MO coefficients
C = {Ck,i =〈χk |ψi 〉}, representing the AO—MO projections, generate the molec-
ular Hilbert-space probabilities of one set of orbitals, conditional on the other
set:

P(ϕ|χ)= {P(i |k)= 〈ϕi |χk〉〈χk |ϕi 〉 ≡ 〈ϕi |P̂k |ϕi 〉 = 〈χk |ϕi 〉〈ϕi |χk〉 ≡ 〈χk |P̂i |χk〉},

P(χ |ϕ)= P(ϕ|χ)T = {P(k|i)},
M O∑

i

P(i |k)=
AO∑

k

P(k|i)= 1. (1)

Above, these probabilities have been expressed as expectation values, either for
ith MO of the AO projection operator P̂k = |χk〉〈χk |, or for kth AO of the MO
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projector P̂i = |ϕi 〉〈ϕi |. Here P(k|i) stands for the conditional probability of χk ,
given ϕi , while P(i |k) denotes the conditional probability of ϕi , given χk . The
normalization conditions in equation (1) involve the summation of the condi-
tional probabilities over all orbital events in one (variable) set, for the fixed orbi-
tal events in the other (parameter) set. By convention the variable index, e.g., k
in P(k|i), denotes the column in the conditional probability matrix P(χ |ϕ), while
the parameter index, e.g., i in P(k|i), identifies row in this matrix.

These geometric probabilities of the molecular Hilbert space in orbital
approximation define implicitly the associated joint AO—MO probabilities of
simultaneously observing the specified (AO, MO)-pair. The AO-“event” in these
joint orbital probabilities may either refer to the bonded atom in the molecule
[17], when the molecular input probabilities of AO, Pχ , are used to probe the
system IT-covalency [5, 6, 14],

P(χ ,ϕ)= {P(i, k)= P(i |k)Pk = P(k, i)= P(k|i)Pi }, (2a)

or to the free atom of the promolecule [18], when the molecular communication
system is probed with the initial AO probabilities P0

χ of non-bonded atoms [18]
to extract the system IT-ionicity [5, 6, 14]:

P(χ0,ϕ)= {P(i, k0)= P(i |k0)P0
k = P(k0, i)= P(k0|i)Pi }. (2b)

Moreover, since the AO projectors in equation (1) are common to both AIM and
free-atoms in the promolecule, {P(i |k)= P(i |k0)} = P(ϕ|χ)= P(ϕ|χ0), and hence

P(i, k)/P(i, k0)= Pk/P0
k . (2c)

The partial normalizations of these joint probabilities generate the relevant AO
and MO probabilities:

Pχ =
{

Pk =
MO∑

i

P(k, i)

}

, P0
χ =

{

P0
k =

MO∑

i

P(k0, i)

}

,

Pϕ =
⎧
⎨

⎩
Pi =

AO∑

k

P(i, k)=
AO∑

k

P(i, k0)

⎫
⎬

⎭
, (3)

also normalized:
AO∑

k
Pk =

AO∑

k
P0

k =
MO∑

i
Pi = 1. The free-atom probabilities P0

χ =
{P0

k = N 0
k /N } reflect the initial AO occupations N0 = {N 0

k } in the promolecular
reference, before the bond formation. The MO probabilities Pϕ ={Pi = ni/N }
similarly reflect the MO occupations n = {ni } in the molecular ground-state.

In the conventional orbital approximation of the MO theory the resul-
tant effect of chemical bonds in a given molecular system is an effective exci-
tation of electrons from the occupied to empty AO, relative to occupations of
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P(  ) P( * ) P( * *)
P 0 * * P (a)

P 0 0 P( * 0) * P (b)

P P( * ) * P (c)

Scheme 1. The physical probability scattering, χ →ϕ→ϕ
∗ →χ

∗
, from the initial (input) proba-

bilities P0
χ , of AO in the non-bonded atoms of the promolecule (Panels a, b) or Pχ , of AO in

AIM (Panel c), via the ground-state occupied MO ϕ to the effective probabilities Pχ of the pro-
moted AO χ

∗
in bonded atoms (molecular output). In Part a the three elementary stages of this

information cascade are shown, giving-rise to the resultant AO-promotion channel b and c. This
probability network involves two geometrical (orbital-mixing) stages of the χ →ϕ=χ0 →ϕ and
ϕ

∗ →χ
∗

probability scatterings reflected by the conditional probabilities P(ϕ|χ)= P(ϕ|χ0) and
P(χ

∗ |ϕ∗
)= P(ϕ|χ)T, respectively, and the MO-occupation stage ϕ→ϕ

∗
described by the P(ϕ

∗ |ϕ)
matrix of the MO probabilities in the molecule.

the non-bonded constituent atoms. In bonded-atoms electrons are redistributed
due to both AO mixing into MO, and the energetically most favuorable occupa-
tions of MO in the ground-state of the molecule. These two aspect are depicted
in Scheme 1, where the effective physical promotion of AO in the molecule
[17] involves both the geometrical probabilities of the molecular Hilbert space,
reflecting the optimum shapes of MO, and the populational probabilities reflect-
ing the occupations of MO in the system ground-state. The effective informa-
tion system for the promotion of AO in a molecule can thus be viewed as a
succession (cascade) of Scheme 1a [17, 18] consisting of the three elementary
sub-channels of the probability propagation: geometrical AO → MO (AO mix-
ing into MO), the occupational MO(all) → MO(occupied), and the geometrical
MO → AO (MO mixing into AO). Wile the first and third stage of this sequence
reflect the geometric property of the MO Hilbert space in the adopted AO basis
set, the second step attributes the physical meaning only to the occupied MO
sub-space and projects out the virtual MO sub-space [17, 18].

The effective conditional probabilities P(χ |χ)= {P(l|k)}, of χl in the chan-
nel output, given χk in the channel input, which determine the resultant (physi-
cal) AO-promotion channel of Scheme 1b, are thus generated by the product of
conditional probabilities determining these three elementary stages in the infor-
mation cascade of Scheme 1a:

P(χ
∗ |χ)= P(ϕ|χ)P(ϕ∗ |ϕ)P(χ ∗ |ϕ∗

)= P(χ
∗ |χ0). (4)

The first term P(ϕ|χ) accounts for the geometrical AO → MO probability
scattering due to the mixing of AO into MO. The second, occupational factor
P(ϕ

∗ |ϕ) extracts the effects due to the system occupied MO, thus accounting for
the actual involvement of each MO in the ground-state Slater determinant. Thus,
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in this matrix all elements in columns, which correspond to the virtual MO in
the electron configuration under consideration, by definition vanish identically.
Finally, the third contribution, P(χ

∗ |ϕ∗
), represents the MO → AO (geometrical)

probability scattering, due to the MO mixing into AO.

2.1. Alternative representations of the MO-occupation channel

Let us now briefly reexamine the MO-occupation conditional probabilities,
P(ϕ

∗ |ϕ)= {P( j |i)}, where P( j |i) stands for the probability of ϕ
∗
j in the output

of the (physical) MO-occupation sub-channel, given ϕi in its input. Therefore,
only the columns j corresponding to the occupied MO, for which Pj = n j/N �=
0, can exhibit a non-vanishing values of P( j |i). By definition, this matrix must
generate in the output of the second sub-channel in Scheme 1a the molecular
(ground-state) MO probabilities Pϕ ={Pi },

Pϕ = P inp.
ϕ P(ϕ

∗ |ϕ), (5)

where the input MO probabilities,

P inp.
ϕ = P0

χP(ϕ|χ)=
⎧
⎨

⎩
P inp.

i =
AO∑

k

P0
k P(i |k)

⎫
⎬

⎭
, (6)

group the output MO probabilities of the geometrical stage AO → MO in prob-
ability propagation, which precedes the occupational step in the physical AO-
promotion information system of Scheme 1a.

This requirement alone cannot specify uniquely the communication network
of conditional probabilities P(ϕ

∗ |ϕ). For example, one could explore the simplest
diagonal (disconnected) representation P̃d(ϕ

∗ |ϕ) of this probability matrix, which
has been adopted in previous studies [17, 18]. It represents the noiseless proba-
bility scattering at the MO-occupation stage, i.e., with the probability entering
the input ϕi being directed towards a single output ϕ

∗
i only. This further implies

the diagonal form of the joint two-MO probabilities,

P̃d(ϕ,ϕ
∗
)= {P̃(i, j)= Pjδi, j }, (7)

which automatically satisfies the required overall normalization,

MO∑

i

MO∑

j

P̃(i, j)=
∑

i

Pi = 1. (8)

The associated conditional probabilities at this MO-occupation stage thus read:

P̃d(ϕ
∗ |ϕ)= {P̃( j | i)= (Pj/P inp.

j )δi, j }. (9)
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They satisfy the partial (row) normalizations, which are expected of the true con-
ditional probabilities, only for the “stationary” channel, when P inp.

ϕ = Pϕ :

MO∑

j

P̃( j | i)= Pi

P inp.
i

= 1, i = 1, 2, . . . (10)

Indeed, in the diagonal (disconnected) representation the constraints of the
correct row normalizations imply the trivial (deterministic, noiseless) channel
corresponding to the identity matrix: P̃d(ϕ

∗ |ϕ)= {δi, j } ≡ I. As we shall argue
below such populational stage characterizes the purely geometric promotion of
AO, with equally weighted contributions from all MO (occupied and virtual).

Substituting equation (9) into equation (4) gives the associated AO-promo-
tion probabilities P̃(χ

∗ |χ )= P(ϕ|χ)P̃d(ϕ
∗ |ϕ)P(χ ∗ |ϕ∗

)= {P̃(l|k )}, where

P̃(l|k ) =
MO∑

i, j

P(i |k )P̃( j |i )P(l| j )=
MO∑

i, j

P(i |k ) Pj

P inp.
j

δi, j P(l| j )

=
MO∑

i

P(l|i ) Pi

P inp.
i

P(i |k). (11)

It is of interest to examine the resulting output probabilities of the promoted AO
(Scheme 1b) in this representation [see equations (3) and (6)]:

P̃l ≡
AO∑

k

P0
k P̃(l|k )=

MO∑

i

P(l|i ) Pi

P inp.
i

⎡

⎣
AO∑

k

P0
k P(i |k)

⎤

⎦ =
MO∑

i

P(l|i)Pi

=
MO∑

i

P(l, i)= Pl . (12)

Therefore, the AO-promotion channel resulting from the diagonal MO-occu-
pation network predicts the molecular AO probabilities Pχ in the output of
Scheme 1b.

It should be stressed, that the conditional AO-promotion probabilities of
equation (11) are input-dependent, through P inp.

ϕ (P0
χ ) [equation (6)]. Therefore,

they describe the effectively dependent two-AO events in the AO-promotion
channel 1b, defining the associated two-AO probabilities [see equation (2)]:

P̃(χ ,χ
∗
)=

{

P̃(k, l)= Pk P̃(l |k )=
MO∑

i

P(l, i)
1

P inp.
i

P(i, k)

}

. (13)
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They satisfy the correct partial normalization for the stationary MO-occupation
channel, when {Pi = P inp.

i }:
AO∑

k

P̃(k, l)=
MO∑

i

P(l, i)
Pi

P inp.
i

= Pl . (14)

The normalization conditions (8) and (10) can be automatically satisfied,
for any admissible input probability vector, within the appropriate non-diagonal
(connected) form of P(ϕ

∗ |ϕ). For the independent MO events in the input and
output of the MO-occupation network the joint two-MO probabilities read:

P(ϕ,ϕ
∗
)= {P(i, j)= P inp.

i Pj }, (15)

where P(i, j) is the probability of ϕi in the channel input and ϕ j in its output.
They give rise to the associated non-diagonal form of the MO conditional prob-
abilities,

P(ϕ
∗ |ϕ)={P( j |i)= P( j, i)/P inp.

i = Pj }, (16)

which determines the information scattering in the MO-occupation sub-channel
in Scheme 1a. This matrix is seen to contain identical rows defined by the MO
probabilities Pϕ .

This representation gives rise to the following conditional probabilities of
the physical AO-promotion in the molecule [equation (4)]:

P(l|k ) =
MO∑

i

MO∑

j

P(i |k )P( j |i )P(l| j )=
[

MO∑

i

P(i |k)
]

MO∑

j

Pj P(l | j )

=
MO∑

j

P(l, j)= Pl, (17)

which guarantees the correct partial normalizations of equation (10),

AO∑

l

P(l |k )=
AO∑

l

Pl = 1, k = 1, 2, . . . (18)

Hence, the output AO probabilities of Scheme 1b are identical with those result-
ing from the diagonal representation of the MO-occupation channel [equation
(12)]:

Pl =
AO∑

k

P0
k P(l |k ). (19)
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In equation (17) we have used the normalization condition of the geometrical
probabilities of MO conditional on AO [equation (1)] and the associated relation
(3) for the joint probabilities P(χ ,ϕ)= {P(l, j)} [equation (2)] of the simulta-
neous (AO, MO)-events. As we shall demonstrate in the next section, these con-
ditional probabilities of the resultant (physical) AO-promotion in the molecule
reproduce the molecular information channel and the resulting entropy/informa-
tion bond-orders in the simplest 2-AO model of the chemical bond, which have
been generated using the two-electron (AIM-resolved) approach [5, 6, 9, 14].

The conditional probabilities of equation (17) are seen to be input-inde-
pendent, exhibiting purely molecular character, independent of the promolecu-
lar bond origin. Hence, the joint effective two-AO probabilities resulting from
this one-electron perspective, of simultaneously observing χk in the promolecu-
lar input and χl in the molecular output, read:

P(χ ,χ
∗
)={P(k, l)= P(l |k )P0

k = Pl P0
k }. (20)

They describe the independent input–output AO-events and satisfy all relevant
partial and overall normalizations:

AO∑

k

P(k, l)= Pl,

AO∑

l

P(k, l)= P0
k ,

AO∑

k

AO∑

l

P(k, l)= 1. (21)

2.2. Overall indices of chemical bonds

In determining the overall entropy/information indices of the covalent and
ionic bond components and the associated total IT bond-order in the mole-
cule one can follow two alternative approaches. The two-input approach used
within the two-electron development in atomic resolution [5, 6, 14] adopts the
molecular AO probabilities in the channel input (Scheme 1c) to extract average
measure of the system average communication “noise”, which describes the
molecular covalency as purely molecular phenomenon. At the same time the pro-
molecular AO probabilities are used (Scheme 1b) to determine the information-
distance measure of the amount of information flowing through the channel,
between the non-bonded atoms in the channel input and AIM in the chan-
nel output, which indexes the molecular ionicity as the difference phenomenon.
Alternatively, the resultant communication system of Scheme 1b can be used to
estimate both bond components [18], since this information-scattering network
has a double-input interpretation in the present orbital development [equation
(4)]: P(χ

∗ |χ)= P(χ
∗ |χ0). Both approaches give-rise to slightly different “normal-

ization” of the total bond-order: in the two-input approach it amounts to the
Shannon entropy of the promolecular AO probabilities, while in the single-input
approach the total bond-multiplicity equals the Shannon entropy of the molec-
ular probabilities of the promoted AO.
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Within the two-input development the molecular conditional entropy indi-
ces of IT [2, 4], of the promoted (molecular) AO output given the initial (molec-
ular) AO input [5, 6, 14], read for the two representations of the preceding sec-
tion:

S̃(χ
∗ |χ )= −

AO∑

k

AO∑

l

P̃(l, k) log
P̃(l, k)

Pk
= S̃(χ ,χ

∗
)− S(χ

∗
),

S(χ
∗ |χ)= −

AO∑

k

AO∑

l

P(l, k) log
P(l, k)

Pk
= S(χ ,χ

∗
)− S(χ

∗
)= S(χ

∗
). (22a)

They measure differences between the corresponding Shannon entropies:

(i) of the joint two-AO probabilities:

S̃(χ ,χ
∗
) = −

AO∑

k

AO∑

l

P̃(l, k) log P̃(l, k) or

S(χ ,χ
∗
) = −

AO∑

k

AO∑

l

P(l, k) log P(l, k)= 2S(χ
∗
), (23)

(ii) of the single-AO (molecular) probabilities:

S(χ
∗
)= −

AO∑

l

Pl log Pl . (24)

This index reflects the average communication “noise” in the resultant
information channel of Scheme 1b. In previous applications of the AIM- and
orbitally resolved theories to simple models of chemical bonds [5–18] it has
been shown to provide a realistic IT descriptor of the molecular bond-covalency.
Indeed, this component is intuitively associated with an extra uncertainty in the
distribution of electrons of the constituent atoms created by their delocalization
throughout the network of the system chemical bonds generated by the occupied
MO. It thus reflects an effective “sharing” of the free-atom electrons between
all constituent atoms, as intuitively expected of the realistic covalent measure.
This spreading (scattering) of the electron probability throughout the molecule
implies an accompanying redistribution of the information contained in the elec-
tron distribution, thus increasing the average communication noise (conditional
entropy) and decreasing the channel complementary descriptor (mutual informa-
tion) indexing the ionic bond multiplicity.

As argued elsewhere [5, 6, 14] the IT-ionic component in the AO-resolved
molecular communication system is reflected by the mutual information index:

Ĩ (χ0: χ ∗
) = S(χ0)− S̃(χ

∗ |χ ) or

I (χ0: χ ∗
) = S(χ0)− S(χ

∗ |χ)= S(χ0)− S(χ
∗
), (25a)
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where S(χ0) stands for the Shannon entropy of the initial AO probabilities

S(χ0)= −
AO∑

k

P0
k log P0

k . (26)

The mutual information descriptor reflects the joint information contained in
probabilities of the initial (promolecular) input χ0 and the final (molecular) out-
put χ

∗
, respectively. It has been expressed in equation (25a) as the difference

between the promolecular entropy in the AO resolution and the relevant aver-
age-noise (conditional entropy) index, with the latter measuring the information
loss due to electron delocalization in the molecule. A reference to this equa-
tion also shows that the information-difference I (χ0 :χ ∗

) amounts to the nega-
tive shift in the molecular Shannon entropy of bonded-atoms, relative to that of
the free atoms. In the AO-promotion channel of Scheme 1b the mutual-informa-
tion descriptor between the promolecular input and the molecular output thus
probes the net amount of information flowing through the communication sys-
tem, which survives the information loss due to the noise.

It has also been argued elsewhere [5–18] that this index, complementary to
the conditional entropy of equation (22a), reflects the bond “ionicity” reaching
the maximum value for the noiseless channel, when there is no effective prob-
ability scattering: P(χ

∗ |χ)= I, S(χ
∗ |χ)= 0, I (χ0 : χ ∗

)= S(χ0). It represent the
difference (displacement) aspect of the molecular communication channel, rel-
ative to the initial free-atom reference. This quantity also reflects the entropy-
deficiency (missing information, relative entropy) of Kullback and Leibler [12],
between probabilities of the dependent (molecular) and independent (promole-
cule-molecule) 2-AO events [14].

It follows from equation (25a) that the entropy-covalency and information-
ionicity indices compete against each other for a fraction of the initial informa-
tion S(χ0), which marks the overall IT bond-order in the orbital communication
system [5–14]:

Ñ (χ0;χ ∗
) = S̃(χ

∗ |χ )+ Ĩ (χ0: χ ∗
)= N (χ0;χ ∗

)= S(χ
∗ |χ)+ I (χ0: χ ∗

)

= S0(χ). (27a)

This overall bond-order conservation accords with the actual competition
between the electron-sharing (covalent) and electron-transfer (ionic) attributes of
the chemical bond [9, 14].

This promolecular “normalization” of the overall bond-order is changed in
the single-input approach [18] to the corresponding molecular Shannon entropy
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of equation (24). Denoting the resulting indices with bars gives:

S̄
(
χ

∗∣∣χ0) = −
AO∑

k

AO∑

l

P(l, k0) log
P(l, k0)

P0
k

= −
AO∑

k

P0
k

AO∑

l

P(l|k) log P(l|k)

= S
(
χ0,χ

∗) − S(χ0), (22b)

Ī (χ0: χ ∗
) =

AO∑

k

AO∑

l

P(l, k0) log
P(l, k0)

P0
k Pl

= S(χ
∗
)+ S(χ0)− S(χ0,χ

∗
)

= S(χ
∗
)− S̄

(
χ

∗∣∣χ0), (25b)

N̄ (χ0;χ ∗
)= S̄

(
χ

∗∣∣χ0) + Ī (χ0: χ ∗
)= S(χ

∗
). (27b)

It should be stressed that the effective electron excitation (promotion) from
the occupied to virtual AO of the promolecule implies a higher degree of uncer-
tainty in the electron distribution of the bonded atoms: S(χ

∗
) � S(χ0). There-

fore, one should in general expect a slightly higher overall IT bond-index in the
single-input approach, compared to that resulting from the two-input scheme.
The equality takes place in these rare systems, e.g., π -electron systems of the alt-
ernant hydrocarbons, in which the promolecular and molecular AO probabilities
are identical.

2.3. Geometrical AO-promotion channel and its bond descriptors

The purely geometric aspect of the information scattering in the molecu-
lar Hilbert-space [17] corresponds to the deterministic, noiseless MO-occupation
sub-channel in Scheme 1a: Pg(ϕ+|ϕ)= I. It involves all (equally weighted) MO
and does not introduce any extra noise into the AO-promotion communications.
The associated purely geometrical promotion of AO due to their mixing into
MO is thus given by the conditional probabilities:

Pg(χ+|χ) = P(ϕ|χ)Pg(ϕ+|ϕ)P(χ+|ϕ+) ≡ P(ϕ|χ)P(χ+|ϕ)

=
{

Pg(l|k)=
MO∑

i

P(i |k)P(l |i )=
MO∑

i

|〈k|i〉|2 |〈l|i〉|2

=
MO∑

i

∣
∣Ck,i

∣
∣2 ∣

∣Cl,i
∣
∣2

}

. (28)
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It should be emphasized, that the output AO probabilities in the geomet-
ric-promotion channel, P+

χ = P0
χPg(χ+|χ)= {P+

l }, in general differ from those
resulting from the effective physical-promotion system, Pχ = P0

χP(χ
∗ |χ)= {Pl}

[17]. More specifically, equation (28) gives [see equation (6)]:

P+
l =

AO∑

k

P0
k Pg(l |k )=

MO∑

i

⎡

⎣
AO∑

k

P0
k P(i |k)

⎤

⎦ P(l |i )=
MO∑

i

P inp.
i P(l |i )

≡
MO∑

i

P(l, i inp.) �= Pl =
MO∑

i

Pi P(l |i ) ≡
MO∑

i

P(l, i). (29)

The geometric channel gives rise to the associated entropy/information indi-
ces describing the effective probability/information scattering in the molecular
Hilbert-space,

Sg(χ+|χ) = −
AO∑

k

P+
k

AO∑

l

Pg(l |k ) log Pg(l |k ),

I g(χ0: χ+) = S(χ0)− Sg(χ+|χ),
N g(χ0;χ+) = Sg(χ+|χ)+ I g(χ0: χ+)= S(χ0), (30)

obtained from equations (22a), (25a), and (27a) by replacing P(χ
∗ |χ) with

Pg(χ+|χ)= I. These “bond” descriptors reflect the complementary aspects of the
AO-promotion created only by the AO mixing into MO: the extra communica-
tion “noise”, the amount of information flowing through the geometric chan-
nel, and the overall IT bond index measuring the Shannon entropy of the input
probabilities, respectively.

The physical IT bond indices of the preceding section reflect the resultant
effects of both the MO shapes and their ground-state occupations, while their
geometric analogs describe only the former aspect of the probability propaga-
tion in the molecular AO-promotion information system. Therefore, the differ-
ence between the corresponding physical and geometric descriptors provides a
measure of the occupational (o) contribution only:

So(χ
∗ |χ) = S(χ

∗ |χ)− Sg(χ+|χ), (31)

I o(χ0: χ+) = I (χ0: χ ∗
)− I g(χ0: χ+).

Since the total bond indices measure the Shannon entropy of the promolecular
input the occupational contribution to the overall bond measure vanishes iden-
tically:

N o(χ0;χ ∗
)= N (χ0;χ ∗

)− N g(χ0;χ+)= 0. (32)
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Therefore, the overall IT bond indices resulting from the geometrical and
physical information channels are identical, with the occupational aspect of the
physical channel influencing only the proportions between the IT-covalent and
IT-ionic bond components. In the next section we shall illustrate the two
AO-promotion channels and their IT indices for the chemical bond formed by
two OAO of bonded atoms in a diatomic molecule A—B.

3. An illustration: interaction of two orthonormal orbitals in the chemical bond

The simplest (two-electron) model involves the interaction of two (real)
valence OAO, χ̃ = (χ̃A, χ̃B)≡ ( Ã, B̃), contributed by atoms A and B, respec-
tively. The assumed (covalent) promolecule M0 = (A0|B0) involves a single
valence electron occupying each free atom, i.e., P0

χ = (1/2, 1/2)= P0
χ̃

. This model
provides a realistic description of both the symmetric covalent bond, when
Pχ = (P, Q)= P0

χ , e.g., the π -bond in ethylene and the σ -bond in H2, and of
the polarized chemical bonds, for P �= Q [5–18].

In this 2-OAO model the two mutually orthogonal combinations, χ̃ =
(χ̃A, χ̃B)=χS−1/2

χ , of the original (overlapping) AO, χ = (χA, χB), where Sχ =
〈χ |χ〉 �= I, are subsequently mixed into the (orthonormal) bonding (b) and anti-
bonding (a) MO expressed in terms of the complementary OAO probabilities P
and Q:

ϕb =√
Pχ̃A + √

Qχ̃B and ϕa = − √
Qχ̃A + √

Pχ̃B, P + Q = 1. (33)

In the joint matrix notation this transformation reads:

ϕ=χC = (χS−1/2
χ )O = χ̃O, O =

[√
P −√

Q√
Q

√
P

]

, OTO = CTSC = I. (34)

Therefore, the OAO-mixing (probability) parameter 0 � P � 1 measures
the conditional probabilities P( Ã|b)= P(B̃|a)= P , of detecting χ̃A in ϕb or χ̃B
in ϕa , respectively. The complementary probability Q = 1 − P similarly reflects
P( Ã|a)= P(B̃|b)= Q.

Again, the squares of the matrix elements in O = {Ok̃,i } generate the condi-
tional probabilities of ϕ into χ̃ , χ̃ = ϕOT, the [see equation (1)]:

P(ϕ|χ̃ )=
{

P(i |k̃)= O2
k̃,i

}
=

[
P Q
Q P

]

= P(χ̃ |ϕ)T = {P(k̃|i)= O2
i,k̃

}. (35)

Indeed, since OT = O−1 reversely transforms ϕ into χ̃ , χ̃ =ϕOT, the squares of
these expansion coefficients also provide conditional probabilities of OAO con-
ditional on MO: P(χ̃ |ϕ)= P(ϕ|χ̃)T.
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x

y

A
~ P b 1 *

bϕϕ     P *~
Aχ P (a)

Q 0      Q 
Q 1      Q 

B
~ P 0 *

aϕaϕ     P *~
Bχ Q

P A
~ P *~

Aχ   P (b)
Q
P

Q B
~ Q *~

Bχ Q  S( ∗~ ~ ) = – PlogP−QlogQ≡H(P)

½ A
~ P *~

Aχ   P I( 0~ : ∗~ ) = 1 H– (P) (c)
Q
P ________________________________ 

½ B
~ Q *~

Bχ Q  N( 0~ ; ∗~ ) = S( ∗~ ~ ) + I( 0~ : ∗~ ) = 1

Scheme 2. The physical OAO-promotion in the ground-state of the two-orbital model for the non-
diagonal representation of the MO-occupation sub-channel. Panel a shows the information cas-
cade for the general input-probability vector P0

χ (x)= (x, y = 1 − x). It involves a succession of
the geometrical (OAO → MO), occupational (MO → MO), and geometrical (MO → OAO) proba-
bility-scattering networks, which determines the resultant communication system of Panels b and
c for the effective OAO promotion in the molecular ground-state. In the stationary channel of
Panel b, which probes the entropy-covalency S(χ̃

∗ |χ̃) [5, 6, 14], the molecular OAO probabilities
Pχ (P)= (P, Q = 1−P) shape the system input “signal”. The non-stationary channel of Panel c uses
in its input the OAO probabilities P0

χ = (1/2, 1/2) of the covalent promolecule, which is needed to

extract the bond information-ionicity I (χ̃0:χ̃∗
) reflecting the difference (displacement) aspect of the

chemical bond. These indices conserve the overall single-bond multiplicity: N (χ̃0; χ̃∗
)= S(χ̃

∗ |χ̃)+
I (χ̃0 : χ̃∗

)= S(χ̃0)= 1 bit.

These conditional probabilities determine the geometric OAO → MO and
MO → MO sub-channels in Scheme 1a. The ground-state (singlet) MO occupa-
tions n = {nb, na} = (2, 0), or the MO probabilities Pϕ = {Pb, Pa} = (1, 0), deter-
mine the MO-occupation sub-channels [equations (9) and (16)]:

P̃d(ϕ
∗ |ϕ)=

[
2 0
0 0

]

or P(ϕ
∗ |ϕ)=

[
1 0
1 0

]

. (36)

Finally, the product of equation (4) generates the associated effective OAO-
promotion probabilities [equations (11) and (17)]:

P̃(χ̃
∗ |χ̃) =

[
2P2 2P Q
2P Q 2Q2

]

or P(χ̃
∗ |χ̃)=

[
P Q
P Q

]

. (37)

The OAO promotion cascades and the resultant channels for the diagonal rep-
resentation of the MO-occupation sub-channel, both physical and geometric,
have been discussed elsewhere [17]. For the symmetrical MO, when P = Q = 1/2,
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x A
~ P 1 +

bϕ     P +
Aχ~ x(P2 + Q2) + 2yPQ

Q 0      Q (a)

(c)

(b)

Q 0      Q 
y B

~ P 1 +
aϕ

bϕ

aϕ     P +
Bχ~ 2xPQ + y(P2 + Q2)

P A
~ P2 +Q2 ≡ w +

Aχ~ P(P2 + Q2) + 2PQ2 ≡ z 

1–w
1–w 

Q B
~ w +

Bχ~ Q(P2 + Q2) + 2P2Q ≡ 1–z     Sg( + ~ ) = H(w)

½ A
~ w +

Bχ~ ½

1 w Ig( 0~ : +~ ) = 1− H(w)

1 w       ____________________________________ 

½ B
~ w +

Bχ~ ½ Ng( 0~ ; +~ ) = Sg( +~ ~ ) + Ig( 0~ : +~ ) = 1

Scheme 3. The geometrical OAO-promotion in the two-orbital model. Panel a shows the informa-
tion cascade involving a succession of two geometrical (OAO → MO) and (MO → OAO) sub-chan-
nels being separated by the deterministic (noiseless) MO-occupation sub-channel Pg(ϕ+|ϕ)= I. It
determines the resultant communicational system of Panels b and c, for the effective OAO-promo-
tion in the molecular Hilbert space. In the non-stationary channel b, which probes the geomet-
ric entropy-covalency Sg(χ̃+|χ̃), the molecular OAO probabilities shape the system input “signal”,
while the stationary channel c uses the input OAO probabilities of the atomic promolecule to extract
the geometric information-ionicity I g(χ̃0 : χ̃+). Again, the overall bond-order measure is conserved
at the 1 bit level marking a single chemical bond:N g(χ̃0; χ̃+)= Sg(χ̃+|χ̃)+I g(χ̃0 : χ̃+)= S(χ̃0)= 1
bit.

they both were shown to correctly predict the IT-single, purely covalent chemical
bond:

Ñ (χ̃0; χ̃ ∗
) = S̃(χ̃

∗ |χ̃)= N g(χ̃0; χ̃ ∗
)= Sg(χ̃

∗ |χ̃)= 1 bit,

Ĩ (χ̃0 : χ̃ ∗
) = I g(χ̃0 : χ̃ ∗

)= 0.

The physical OAO-promotion of the two-orbital model for the new, non-
diagonal representation of the MO-occupation sub-channel is summarized in
Scheme 2. The relevant χ̃ →ϕ→ϕ

∗ → χ̃
∗

cascade is shown in Scheme 2a. It
defines the resultant OAO-promotion channel of Scheme 2b and 2c, reported for
the molecular and promolecular input probabililities, respectively, together with
the relevant entropy-covalency and information-ionicity indices.

This non-symmetrical orbital channel is identical with the AIM-resolved
channel of the previous two-electron approach (see, e.g., [5, 6, 14]). As already
reported in Scheme 2, its entropy/information descriptors (in bits) of the
model chemical bond, from equations (22a), (25a), and (27a), read: S(χ̃

∗ |χ̃)=
− P log P − Q log Q ≡ H(P) (Scheme 2b), I (χ̃0:χ̃

∗
)= 1 − H(P) (Scheme 2c),

and hence N (χ̃0 : χ̃ ∗
)= S(χ̃

∗ |χ̃) + I (χ̃0 : χ̃ ∗
)= S(χ̃0)= 1. Therefore, when the

bonding MO is polarized in the whole range 0 � P � 1 of the AO-probability
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parameter P controlling the OAO mixing into MO the overall IT bond-order is
preserved at the 1 bit level, while the complementary IT-covalency and IT-ionic-
ity descriptors of this single chemical bond compete for the initial entropy/infor-
mation S(χ̃0) contained in the promolecular electron distribution among the two
OAO. As expected, for the symmetrical MO, when P = Q = 1/2, one again diag-
noses the purely-covalent chemical bond in the model: N (χ̃0:χ̃ ∗

)= S(χ̃
∗ |χ̃)= 1

and I (χ̃0 : χ̃ ∗
)= 0.

These entropy/information indices of the model chemical bond are in
accord with the chemical intuition. They give rise to the conserved overall bond
multiplicity and correctly reflect the competition between the complementary
bond components. Indeed, the greater a degree of the electron “sharing” between
the bonded atoms (the covalent aspect), i.e., the greater average “noise” in the
molecular information channel, the smaller the “localization” and/or CT of the
valence electrons in molecules (the ionic aspect), as measured by the mutual
information of the molecular communication system, which has survived despite
the information loss due to the noise. The partial-channel approach [7, 14] to
this OAO-promotion information network then generates transparent perspective
on a subtle interplay of various AIM-resolved contributions to this conserved
single bond-order [9, 14].

In Scheme 3 the geometrical OAO-promotion in the model is summarized.
As reported in the Panels b and c the sum of the complementary conditional-
entropy and mutual-information descriptors of the channel IT covalency and
ionicity, respectively, again conserves the overall index of the Hilbert space pro-
motion of AO due to their mixing into MO: N g(χ̃0; χ̃+)= Sg(χ̃+|χ̃) + I g(χ̃0 :
χ̃+)= S(χ̃0)= 1 bit. It also follows from the expressions for the bond compo-
nents reported in Scheme 3b and 3c that for the symmetric bonding MO, for
P = Q = 1/2 and hence w= z = 1/2, Sg = 1 and I g = 0. Therefore, in this sym-
metric case the occupational contributions of equation (31) to the conserved
overall bond order identically vanish: So(χ̃

∗ |χ̃)= I o(χ̃0 : χ̃ ∗
)= 0.

4. Molecular promotion channels of intermediate orbitals

In this section we provide an overview of the communication systems rep-
resenting the physical and geometric promotions for the intermediate sets of
orbitals, which connect to the customary stages of the electronic structure
readjustments accompanying the chemical bond formation. An example of the
effective physical promotion, which combines the geometric and populational
sub-channels is represented by the AO → MO(occd.) → AO probability scatter-
ings [17, 18] shown in Schemes 1a and 2a, which give rise to the resultant chan-
nels of Schemes 1b and 2(b, c), respectively. These effective information systems
are seen to represent the communication cascades involving two geometrical
(orbital mixing) sub-channels, with the information scattering determined by the
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conditional probabilities P(ϕ|χ) [or P(ϕ|χ̃)] and P(χ
∗ |ϕ∗

) [or P(χ̃
∗ |ϕ∗

)], respec-
tively, and the MO electron population sub-channel described by the P(ϕ

∗ |ϕ) [or
P̃d(ϕ

∗ |ϕ)] matrix of conditional probabilities reflecting the ground-state occupa-
tions of MO.

The effective information channels of Schemes 1b and 2(b, c) amount to the
resultant (physical) promotion of AO, from the initial (promolecular or molec-
ular) AO probabilities to the final effective probabilities of interacting orbi-
tals of constituent atoms in the molecular ground-state. Similar communication
channels can be constructed for all admissible intermediate stages of the orbital
promotion in molecules. They should also involve the information systems rep-
resenting the elementary orbital-occupation and orbital-mixing “displacements”
in the system electronic structure. Examples of such partial channels involving
solely the (intermediate) OAO basis set have been given in the preceding section.

Such elementary promotion cascades for intermediate stages of shaping the
final, equilibrium molecular electronic structure also involve changes in the effec-
tive electron occupations of the given set of orbitals, giving rise to their purely
occupational-promotion, e.g., in the atomic excitations from their ground-states
to the specified valence-states in the molecule, or in occupying MO in accor-
dance with the principle of the least orbital energy. The orbital-mixing stages,
for the fixed occupations of the original set, generate the purely geometric,
delocalizational-promotion, e.g., due to the AO-mixing into the “directed” hybrid
orbitals (HO), their subsequent transformation into orthogonal HO (OHO),
combining the OHO into MO, mixing the canonical MO of the SCF LCAO MO
theory into the natural orbitals (NO) in the familiar configuration-interaction
(CI) scheme, etc. These partial geometric transformations modify the shapes of
initial orbitals, thus changing orientations of the associated state-vectors in the
molecular Hilbert-space.

These elementary channels subsequently combine into the physical or geo-
metrical sequences (cascades), which reflect the effective promotions of the
chosen set of orbitals ψ = AO, HO, OHO, MO, NO. The physical cascade
for orbitals ψ reflects the effective ψ→ψ

∗
probability scattering via the system

occupied MO, ψ→ MO(occd.) →ψ
∗

or ψ→ (ϕ→ϕ
∗
)→ψ

∗
. It is defined by the

conditional probabilities [see equation (4)]

P(ψ
∗ |ψ)= P(ϕ|ψ)P(ϕ∗ |ϕ)P(ψ∗ |ϕ∗

). (38)

In general, the geometric factors P(ϕ|ψ)= P(ψ |ϕ)T may involve several
intermediate steps of the orbital-transformation leading from ψ to ϕ:ψ→
· · · →ϕ ≡ ψ→ϕ. The associated geometrical cascade ψ→ MO(all) →ψ

∗
or

ψ→ (ϕ→ϕ+)g →ψ+ ≡ ψ→ϕ→ψ+, corresponds to the identity sub-channel
for the MO-occupation step, Pg(ϕ+|ϕ)= I, in the probability product of the pre-
ceding equation. It thus refers to the ψ-promotion due to all (equally weighted)
MO in the adopted AO basis set [see equation (28)]:
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P inp. P( * ) * P (a)

P inp. P( * ) * P (b)

P 0 P( ) P g (c)

P P( ) P g (d)

Scheme 4. The elementary occupational (Panels a and b) and geometrical (Panels c and d) channels
of the orbital-promotion cascades: for the MO-occupation promotion ϕ→ϕ

∗
(Panel a), the physi-

cal ψ-occupation ψ→ψ
∗

(Panel b), and the two, mutually reverse, orbital-mixing transformations:
χ →ψ (Panel c) and ψ→χ (Panel d). In the third channel the initial, free-atom probabilities P0

χ of

AO in the promolecular input give rise to the geometrically promoted probabilities P g
ψ

, while in the

fourth channel the molecular input probabilities Pψ are transformed into the geometrical average
probabilities P g

χ .

Pg(ψ+|ψ)= P(ϕ|ψ)Pg(ϕ+|ϕ)P(ψ+|ϕ+)= P(ϕ|ψ)P(ψ+|ϕ). (39)

Each factor in the probability products of equations (38) and (39) deter-
mines itself the elementary channel describing the given transformation of orbi-
tals or the specified displacements in their effective occupations. For example, it
follows from equation (5) that the (physical) MO-occupation conditional prob-
abilities P(ϕ

∗ |ϕ) define the elementary channel transforming the input (geomet-
ric) probability vector of MO, P inp.

ϕ , into the ground-state MO probabilities Pϕ ,
thus defining the elementary channel of Scheme 4a. Similarly, the conditional
probabilities P(ψ

∗ |ψ) define the effective channel for the physical, occupation-
promotion of ψ in the molecule, shown in Scheme 4b, involving the probabil-
ity scattering from the initial probabilities due to the preceding orbital-mixing
stage(s), P inp.

ψ = P0
χP(ψ |χ), to their effective physical probabilities in the mole-

cule: Pψ = P inp.
ψ P(ψ

∗ |ψ).
Similar elementary channels are defined by any of the admissible geometri-

cal (orbital-mixing) stages or their successions (cascades). For example, the resul-
tant χ → · · · →ψ ≡ χ →ψ orbital-mixing transformation, from the initial (AO)
set χ to the intermediate functions ψ , generates the conditional probabilities
P(ψ |χ)= {P(m|k)} = P(χ |ψ)T, of observing ψm , given χk , in the molecular Hil-
bert space. They define the elementary geometrical channels of Schemes 4(b, c).

It should be observed that probabilities P(ψ |χ) also give rise to the
associated average (geometric) populations of ψ,Ng

ψ = {N g
m}, and their effec-

tive probabilities, P g
ψ = Ng

ψ/N = {Pg
m}, which result from the elementary χ →ψ

transformation of the initial (promolecular) AO occupations N 0
χ = {N 0

k } and
probabilities P0

χ = N 0
χ/N ={P0

k }:
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P( ) P( * ) P( * *)
P 0 * P (a)

(c)

(b)
P( ) Pg( + ) P( + +)

P 0 + + P +

P( ) P( + )
P 0 + P +

Scheme 5. The physical (Panel a) and geometrical (Panels b and c) cascades χ → (ψ→ψ
∗
)→χ

∗

and χ → (ψ→ψ+)g →χ+ ≡ χ →ψ→χ+ of the AO-promotion via the intermediate orbitals ψ ,
from the initial (promolecular) probabilities P0

χ to the promoted (molecular) probabilities Pχ or

P+
χ , respectively.

Ng
ψ = N 0

χP(ψ |χ) and P g
ψ = P0

χP(ψ |χ). (40)

The “reverse” geometrical channel, defined by conditional probabilities
P(χ |ψ)= P(ψ |χ)T, similarly propagates the input probabilities Pψ or occupa-
tions Nψ into the average (geometric) AO quantities, e.g., P g

ψ into P0
χ or Ng

ψ

into N 0
χ . The molecular physical occupations Nψ and the associated probabilities

Pψ = Nψ/N are similarly transformed into the corresponding AO (geometrical)
averages (Scheme 4d):

Ng
χ = NψP(χ |ψ), P g

χ = PψP(χ |ψ)= Ng
χ/N . (41)

It should be realized, that the physical AO-promotion cascade of Scheme 5a,
χ →[ψ→ (ϕ→ϕ

∗
)→ψ

∗]→χ
∗ ≡ χ → (ψ→ψ

∗
)→χ

∗
, which involves the

two geometrical sub-channels of Scheme 4(c, d) and the physical ψ-population
channel of Scheme 4b, generated by the conditional probabilities of equation
(38) describing the effective promotion of ψ through the system occupied MO,
amounts to the resultant AO-promotion system of Scheme 1b:

P(χ
∗ |χ)= P(ψ |χ)P(ψ∗ |ψ)P(χ ∗ |ψ∗

) ≡ Pχ →ϕ(χ
∗ |χ ), (42)

where the notation Pχ →ϕ(χ
∗ |χ ) reflects the fact that these promotion probabil-

ities include contributions from all intermediate stages in orbital transformations
from AO to MO.

Again, combining the geometrical conditional probabilities of equation (39)
with the elementary geometrical channels of Scheme 4(c, d), in the information
cascade χ → [ψ→ (ϕ→ϕ+)g →ψ+]→χ+ ≡ χ → (ψ→ψ+)g →χ+, recon-
structs the communication network defined by the Hilbert-space probabilities of
equation (28), for the resultant geometrical promotion of AO in the molecule:

Pg(χ+|χ)= P(ψ |χ)Pg(ψ+|ψ)P(χ+|ψ+) ≡ Pg
χ →ϕ(χ

+ |χ ). (43)
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Multiplying the last two equations by P−1(ψ |χ) from the left and by
P−1(χ+|ψ+)= P−1(χ

∗ |ψ∗
) from the right, allows one to formally express the

conditional probabilities embodying the physical and geometric promotion of
orbitals ψ in terms of the corresponding (resultant) AO-promotion probabilities:

P(ψ
∗ |ψ)= P−1(ψ |χ)P(χ ∗ |χ)P−1(χ

∗ |ψ∗
),

Pg(ψ+|ψ)= P−1(ψ |χ)Pg(χ+|χ)P−1(χ+|ψ+). (44)

It should be realized, that P−1(ψ |χ) �= PT(ψ |χ)= P(χ |ψ). Indeed, the
inverse matrix of the conditional probabilities (positive) must contain nega-
tive elements and thus cannot be interpreted as probability matrix. Therefore,
P−1(ψ |χ), for which P(ψ |χ)P−1(ψ |χ)= P−1(ψ |χ)P(ψ |χ)= I, does not describe
the probability propagation ψ→χ , which is embodied by PT(ψ |χ)= P(χ |ψ).

Finally, the product

P(ψ |χ)PT(ψ |χ+)= P(ψ |χ)P(χ+|ψ) ≡ Pg
χ →ψ (χ

+ |χ ) (45)

generates the fraction of the resultant (geometric) AO-promotion due to the
transformation linking χ and ψ . This probability scattering also follows from
equation (43) by formally putting Pg(ψ+|ψ)= I, i.e., by neglecting the remaining
χ -promotion contribution Pg

χ →ϕ(χ
+ |χ ) resulting from the geometric probabil-

ity scattering of the ψ-promotion due to the effective transformations between ψ
and ϕ [equation (39)]:

Pg
ψ→ϕ(χ

+ |χ ) ≡ P(ψ |χ)[Pg(ψ+|ψ)− I]P(χ+|ψ)= Pg(χ+|χ)− P(ψ |χ)P(χ+|ψ)
= Pg

χ →ϕ(χ
+ |χ )− Pg

χ →ψ (χ
+ |χ ). (46)

The stage-additivity of the AO-promotion probabilities, Pg
χ →ϕ(χ

+ |χ )=
Pg
χ →ψ (χ

+ |χ ) + Pg
ψ→ϕ(χ

+ |χ ), also extends to the physical promotion of AO
in the molecule. The relevant combination rule, Pχ →ϕ(χ

∗ |χ )= Pg
χ →ψ (χ

∗ |χ )+
Pψ→ϕ(χ

∗ |χ ), now involves the geometric contribution due to Pg
χ →ψ (χ

+ |χ )
information-scattering of equation (45), and the remaining physical part of
the resultant probability-propagation ψ→ (ϕ→ϕ

∗
)→ψ

∗
, which involves the

system occupied MO:

Pψ→ϕ(χ
∗ |χ ) ≡ P(ψ |χ)[P(ψ∗ |ψ)− I]P(χ ∗ |ψ)= P(χ

∗ |χ)− P(ψ |χ)P(χ ∗ |ψ)
= Pχ →ϕ(χ

∗ |χ )− Pg
χ →ψ (χ

∗ |χ ). (47)

To summarize, the resultant information channels representing the geo-
metric or physical promotion of AO in molecules can be additively decom-
posed for any admissible Intermediate Orbitals (IO) in terms of the complemen-
tary sub-channels representing the AO → IO and IO → MO orbital transforma-
tions, respectively. This further implies a similar additive decomposition of the
entropy/information indices of the system chemical bonds, generated by these
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sub-channels. In the next section we shall investigate these combination-rules for
the IT bond-indices in the orbitally resolved communication theory of the chem-
ical bond.

5. Elementary steps in probability-scattering networks

The overall probability-scattering matrix P(χ
∗ |χ)= {P(l

∗ |k)}, which defines
the resultant promotion of AO in molecules, as well as the effective promotion
probabilities P(ψ

∗ |ψ) for intermediate orbitals ψ , can be alternatively viewed as
the information “cascades” composed of the consecutive sub-channels in the rel-
evant chain of m elementary information scatterings involving orbitals:

φ(s) = (χ , χ̃ , . . .,ψ, . . .,ϕ,ϕ
∗
, . . .,ψ

∗
, . . ., χ̃

∗
,χ

∗
), for

s = 0, 1, 2, . . .,m, respectively, (48)

where ψ and ψ
∗

stand for the molecular geometrically and physically promoted
sets, respectively. At stage s> 0 they are determined by the conditional proba-
bilities of the current set of orbitals φ(s), conditional on orbitals φ(s−1) of the
preceding stage: P(φ(s)|φ(s−1))= {P(n(s)|m(s−1))}. Examples of such elementary
information networks are provided by the MO-occupation channel P(ϕ|ϕ∗

) of
Sect. 2.1, and the geometrical steps of the orthogonalization of AO into OAO,
P(χ̃ |χ), and of the reverse transformation, P(χ |χ̃).

In Scheme 6 we have illustrated such a succession of elementary probability
propagations which lead from the initial AO probabilities P0

χ , for s = 0, to the
final (molecular) probabilities P

∗
χ for s = m, with the output signal of the preced-

ing stage providing the input signal for the next stage. The whole series amounts
to the overall physical promotion of AO in molecules:

P(χ
∗ |χ) =

m∏

t = 1

P(φ(t)|φ(t−1)) ≡ P(φ(m)|φ(0)),
∑

n

P(n(t)
∣
∣
∣m(t−1) ) =

∑

n

P(n(t) |k )= 1, t = 1, 2, . . . , s, . . . ,m. (49)

The effective output probabilities after consecutive stages in this scheme
thus read:

P (1)
φ = P0

φP(φ(1)|φ(0)) ≡ P0
χP(χ̃ |χ) ≡ Pg

χ̃
,

P (2)
φ = P (1)

φ P(φ(2)|φ(1))= P0
χ [P(χ̃ |χ)P(φ(2)|χ̃)] ≡ P0

χP(φ(2)|χ),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

P (m)
φ = P (m−1)

φ P(φ(m)|φ(m−1))= · · · = P0
χ

m∏

t = 1

P(φ(t)|φ(t−1)) ≡ P0
χP(χ

∗ |χ)

= P
∗
χ , (50)
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(0) (1) (1) (2)

P 0 P( ~ ) ~ = (1) P (1) (1) P( (2) (1)) (2)  … 

(m-1) (m)

… P (m 1) (m 1) P( (m) (m 1)) (m) P (m) P *

Scheme 6. The molecular information-cascade resulting from the consecutive arrangement of infor-
mation channels {P(φ(t)|φ(t−1))}, t = 1, 2, . . ., s, . . .,m, of the elementary reconstructions in the
system electronic structure leading from the promolecular AO probabilities P0

χ = P (0)
φ

to the molec-

ular AO probabilities P
∗
χ = P (m)

φ
.

where P(φ(s)|χ)= {P(n(s)|k)} groups the probabilities of ϕ(s) conditional on AO,
i.e., the combined effect of probability propagations via all preceding steps
t = (1, 2, . . ., s).

For example, in typical SCF LCAO MO calculations the atomic ground-
state populations of AO can be modified, to account for the populational
promotion of atoms to the relevant valence-state configuration. Such initially
promoted basis set functions can then be subject to the appropriate (one-cen-
tre) hybridization, to be subsequently (many-centre) orthogonalized, and finally
–“rotated” in the system orbital Hilbert-space into the optimum MO. All these
stages generate specific contributions to the IT indices of chemical bonds, e.g.,
the entropy/information descriptors of the intermediate-orbital promotion chan-
nels of the preceding section, or those describing the elementary stages of equa-
tion (50) and Scheme 6.

The resultant conditional probabilities of the s-chain in this probability
propagation, including all stages from t = 1 to t = s in Scheme 6,

P(φ(s)|χ) ≡ {P(n(s)|k)} =
s∏

t = 1

P(φ(t)|φ(t−1))= P(φ(s−1)|χ)P(φ(s)|φ(s−1)), (51)

generates the associated IT bond-indices of Eqs. (22a), (25a), and (27a):

S(s)= S(φ(s)|χ)= −
AO∑

k

(s)∑

n

Pk P(n(s) |k ) log P(n(s) |k )= S(χ ,φ(s))− S(χ),

I (s)= I (χ0: φ(s))= S(φ(s))− S(s), N (s)= S(s) + I (s)= N (χ;φ(s))= S(φ(s)).

(52)

They reflect the resultant entropy-covalency, information-ionicity and total
bond multiplicity, acquired in all elementary stages 1 � t � s. Only for s = m the
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full measures of the molecular (physical) promotion of AO are recovered:

S(m) = S(χ
∗ |χ), I (m)= I (χ0: χ ∗

)= S(χ
∗
)− S(m),

N (m) = N (χ0;χ ∗
) = S(χ

∗
). (53)

Since each elementary channel introduces extra communication “noise” into
these probability-scattering networks, the acquired uncertainty at stage s cannot
be smaller than that at preceding stage:

S(s) � S(s−1) � S(s−2) � . . . � S(1) � S(0)= 0. (54a)

with the equality S(s)= S(s−1) corresponding to the noiseless (deterministic)
identity-channel at stage s,P(φ(s)|φ(s−1))= I, i.e., φ(s)=φ(s−1). Moreover, since
I (s)= S(φ(s))−S(s), equation (54a) implies a monotonic decrease of the IT-ionic-
ity index in successive steps of the consecutive information cascade in molecular
systems,

I (s) � I (s−1) � I (s−2) � . . . � I (1) � I (0)= S(χ0), (54b)

where the initial reference values S(0)= 0 and I (0)= S(χ0) characterize the pro-
molecular channels discussed in Sect. 8. This decrease in I (s) is expected to
be slower compared to increase in S(s), since N (s)= S(φ(s)) should also slowly
increase with the growing electron delocalization in successive stages of the prob-
ability propagation in molecules.

Of interest also are the entropy/information systems for each elementary
step in the cascade of Scheme 6. The relevant communication system of stage s
involves in its input the output probability of the preceding stage, P (s−1)

φ [equa-
tion (50)] the communication links characterized by the conditional probability
matrix P(φ(s)|φ(s−1)) of equation (51), which generates the output probabilities
at step s: P (s)

φ = P (s−1)
φ P(φ(s)|φ(s−1)). The information indices of this elementary

channel of sth stage in the orbital-probability scattering read:

Ss = S(φ(s)|φ(s−1))= −
(s−1)∑

m

(s)∑

n

P(s−1)
m P(n(s)|m(s−1)) log P(n(s)|m(s−1))

= −
(s−1)∑

m

(s)∑

n

P(m(s−1), n(s)) log
P(m(s−1), n(s))

P(s−1)
m

= S(φ(s−1),φ(s))− S(φ(s−1)),

Is = I (φ(s−1) : φ(s))= S(φ(s))+ [S(φ(s−1))− S(φ(s−1),φ(s))]= S(φ(s))− Ss,

Ns = N (φ(s−1);φ(s))= Is + Ss = S(φ(s)). (55)

A reference to equation (52) thus indicates the total IT bond-order preservation:
N (s)= Ns = S(φ(s)). In other words, in the sequential series of elementary chan-
nels the total bond-multiplicity acquired after s consecutive steps is the same as
that reached in the last stage of the series.
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6. Stage-additivity of bond-indices

In the consecutive-cascade of elementary information sub-channels of
Scheme 6 the role of the preceding step in the series is limited to shaping
the input probabilities of the next step. Indeed, should these probabilities be
known, one could forget altogether about the existence of all earlier steps in the
sequence. Therefore, the essence of this arrangement is that the probabilities of
the current probability-scattering stage are directly coupled only to probabilities
of the preceding stage.

This feature of the sequential information cascade is illustrated in Figure 1
for the simplest case of two sub-channels PI(B |A) ≡ {π( j |i)} and PII(C|B) ≡
{π(k| j)} in the series

A → PI(B |A)→ B → PII(C|B)→ C, (56)

with A = {Ai },B ={B j }, and C = {Ck} grouping the input, intermediate, and
output probabilities, respectively. The effective output probabilities of the
cascade as a whole is determined by the intermediate set of probabilities
B = API(B |A):

C = BPII(C|B)= A[PI(B |A)PII(C|B)] ≡ APIII(C|A), (57)

were the conditional probabilities PIII(C|A) ≡ {π(k|i)} determine the communi-
cation links between the cascade input and output “events”.

In figure 1 the mutual dependence between probabilities is reflected by
the overlap between the corresponding circles representing the associated Shan-
non entropies S(A), S(B) and S(C) of the three probability vectors involved
[4]. Their mutual arrangement in the consecutive cascade is depicted in Panel
a, while Panel d illustrates conditional-entropy (S) and mutual-information (I )
quantities, which appear in a general case of three dependent probability distri-
butions [4]. As seen in the figure, in the sequential cascade the mutual-informa-
tion I (A :C), as reflected by the overlap between S(A) and S(C), must be totally
included in the mutual information in I (A : B), again represented by the over-
lap between S(A) and S(B), since the whole dependence of C on A originates
from B . Therefore the mutual information in the peripheral distributions must
be equal to the mutual information in all three distributions involved:

I (A :C)= I (A :B :C) � I (A :B) < S(A). (58a)

The inequality in the preceding equation, which is well illustrated in figure
1, expresses the fact that the amount of information at the exit of the cascade,
I (A :C), is less than that at the exit of its first sub-channel, I (A :B). The latter
is also seen to preserve only a fraction of the initial information content S(A)
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(a) S(A)   S(B)   S(C)

 I(A :B|C)                S(C|B)

(b) S(A|B)       I(A :B) S(B|A)

(c) S(A|C)            I(A :C) = I(A :B:C) S(C|A)

(d) S(A|B,C) I(A :B |C)      S(B|A,C)

I(A :B:C)

I(A :C|B)

S(C | A,B) I(B :C |A)

Figure 1. Dependent probability distributions A ={Ai },B ={B j }, and C ={Ck} of the two-step
information channel, A → PI(B |A) → B → PII(C|B) → C, which consists of the consecutive
arrangement of two sub-channels PI(B |A) and PII(C|B) giving rise to the resultant channel
PIII(C|A)= PI(B |A)PII(C|A). These 3 channels give rise to the overlapping Shannon entropies S(A),
S(B), and S(C) of Panels (a)–(c), which depict their mutual arrangement for the specific case of the
sequential arrangement of the two sub-channels, when the output of the first channel constitutes the
input of the second channel in the series. Therefore, a dependence C(A) is only implicit in character,
C(B(A)), as schematically shown in Panel a. This diagram shows that the overlap region between S(A)
and S(C), representing the mutual information I (A:C)= I (A:B :C)+ I (A:C|B) (Panels a, c), is com-
pletely contained in I (A:B) (Panels a, b), thus implying the vanishing mutual information in A and
C, conditional on B :I (A:C|B)= 0. In other words, for the series arrangement of two sub-channels
I (A:C)= I (A:B :C), the mutual information in the peripheral probabilities is equal to that in three
probability distributions: I (A:C) = I (A:B:C). This is not the case for general dependencies between
three probability vectors, which correspond to the mutual arrangement of three subsystem entropies
shown in Panel d. The diagram b and c show a gradual loss of information (increase in entropy) at
each step, as reflected by the difference between conditional-entropies S(A|C) > S(A|B). It implies
the associated lowering of the amount of information flowing through the cascade, measured by the
corresponding mutual-information quantities, I (A:B) > I (A:C), fractions of the initial amount of
information S(A) at the cascade input.
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in the cascade input probabilities. This successive loss of information is alterna-
tively represented by the associated inequalities between the direct measures of
the missing information at each step, which is provided by the relevant condi-
tional-entropy indices, which are also shown in the figure:

S(A|C)= S(A)− I (A :C) > S(A|B)= S(A)− I (A :B). (58b)

The first index measures the information loss for the cascade as a whole, while
the second reflects the information lost in its first sub-channel.

These inequalities can be derived analytically, by considering the elementary
information quantities of figure 1d, in terms of which the overall information
loss in the cascade can be expressed in terms of the information loss due to the
preceding stage:

S(A|C) = S(A|B)+ I (A :B |C)− I (A :C|B)
= S(A|B)+ I (A :B |C), (59)

since for the consecutive sub-channels the explicit dependence between periph-
eral probabilities, which does not result from their dependence on B, identically
vanishes: I (A : C|B)= 0. The preceding equation expressed the so called stage-
additivity of the information loss (conditional entropy) in the sequential cascade.

Thus, the mutual information I (A : B |C), reflecting a dependence of A on
C which cannot be attributed to A[C(B)], represents the extra loss of the initial
information in the second sub-channel. It represents a fraction of I (A : B), of
the initial information content S(A), which has survived at the exit of the first
sub-channel.

Returning now to the stage-covalency index Ss of the preceding section, the
above stage-additivity of the conditional-entropies reveals that by the very con-
struction of the information cascade of Scheme 6 this IT-index of the elementary
channel defining step s in the series can be alternatively expressed as the corre-
sponding difference between the successive resultant indices of equation (52):

Ss = S(s) − S(s−1)= S(φ(s)|χ)− S(φ(s−1)|χ)= S(φ(s),χ)− S(χ ,φ(s−1)). (60)

In the specific case of the two-step cascade of fig. 1 these entropies read:
S(I)= S(A|B)= SI, S(II)= S(A|C), and hence S2 = S(II)−S(I)= I (A :B |C). A sim-
ilar additivity rule holds for the complementary mutual-information indices of
stage s:

Is = I (s) − I (s−1)= I (χ : φ(s))− I (χ : φ(s−1))

= S(φ(s−1)|χ)− S(φ(s)|χ)= − Ss, (61)

and hence: Ns = N (s) − N (s−1)= 0. This total bond-order preservation at succes-
sive steps of the sequential series of elementary probability-scattering sub-chan-
nels is also illustrated in figure 1: NI = S(A|B) + I (A : B) ≡ SI + II = S(A|C) +
I (A :C) ≡ SII + III = S(A).
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To summarize, each next step in the sequential cascade increases the condi-
tional-entropy (information loss) index, while decreasing by the same amount the
mutual-information (information flow) index, thus preserving their sum, measur-
ing the overall IT bond-multiplicity, at the cascade initial entropy level.

Different grouping rules for these IT bond indices apply in the communica-
tion system consisting of elementary sub-channels combined in the parallel man-
ner. They are summarized in the Appendix.

7. Orbital transformations in typical molecular calculations

Consider the familiar scenario in the quantum-mechanical calculations of
the molecular electronic structure involving the multi-step transformation of the
initial (real) AO into the optimum MO for the system ground-state:

ϕ=χC = (χU)S−1/2
ψ O ≡ (ψS−1/2

ψ )O = ψ̃O, UUT = OOT = I,
Sψ = 〈ψ | ψ〉 . (62)

Here, the atomic “rotations” U = {{Ux∈X,t∈X }δX,Y } = {UXδX,Y } transform the
mutually orthogonal, canonical AO on atom X,χ X ={χx∈X }, into the appropriate
hybrids (HO), ψ =χU = {ψt } = {ψ X =χ X UX }. For this “directed” (localized) set
of atomic orbitals S−1/2

ψ = {Ht,t̃ } ≡ H and S1/2
ψ = {ht̃,t } ≡ h = H−1 provide the rel-

evant transformations between HO and their symmetrically orthogonalized ana-
logs (OHO): ψ̃ =ψH and ψ = ψ̃h. The latter are finally “rotated” into MO
using the LCOHO (orthogonal) transformation O = {Ot̃,i },ϕ= ψ̃O, and hence
ψ̃ =ϕOT.

Therefore, for this particular selection of intermediate stages in determin-
ing the effective (physical) AO promotion in molecules various sets of orbitals of
equation (48), determining the elementary information-propagation sub-channels
read: φ(s)= (χ ,ψ, ψ̃,ϕ,ϕ∗

, ψ̃
∗
,ψ

∗
,χ

∗
), for s = 0, 1, 2, . . ., 7, respectively. These

partial transformations of orbitals in typical MO calculations generate the asso-
ciated conditional probabilities for each orbital transformation stage, which
determine the elementary communication systems in Panels a and c of Scheme 7:

P(ψ |χ)= {{P(t |x)= (Ux,t )
2}δX,Y } = {P(ψ X |χ X )δX,Y } = P(χ

∗ |ψ∗
)T (63)

P(ψ
∗ |ψ̃

∗
)= {P(t |t̃)= (ht̃,t )

2} = P(ψ̃ |ψ)T, (64)

P(ϕ|ψ̃)= {P(i |t̃)= (Ot̃,i )
2} = P(ψ̃

∗
|ϕ∗
)T. (65)

The resultant (physical) AO-promotion channel P(χ
∗ |χ) of Scheme 1 also

involves the MO-population sub-channel P(ϕ
∗ |ϕ) of Eq. 16 [see also Schemes

1a and 7b], which formally transforms the input MO probabilities P inp.
ϕ , from
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P( ) P( ~ ) P( ~ )
P 0 ~ P g (a)

P( * )
P g * P * (b)

P( ~ * *) P( * ~ *) P( * *)
P * * ~ * * * P * (c)

P( ) P( * ) P( * *)
P 0 * * P * (d)

Scheme 7. The partial communication systems behind the effective AO-promotion channel of
Scheme 1: the AO → MO probability-scattering cascade (Panel a), consisting of three elemen-
tary channels P(ψ |χ),P(ψ̃ |ψ), and P(ϕ|ψ̃): P(ϕ|χ)= P(ψ |χ)P(ψ̃ |ψ)P(ϕ|ψ̃); the MO-occupa-
tion sub-channel P(ϕ

∗ |ϕ), from the initial (geometrical) MO probabilities P g.
ϕ = P0

χP(ϕ|χ) to

the physical MO probabilities Pϕ of the system ground-state electron configuration (Panel

b); the MO
∗ → AO

∗
probability-propagation cascade: P(χ

∗ |ϕ∗
)=P(ψ̃

∗
|ϕ∗
)P(ψ

∗ |ψ̃
∗
)P(χ

∗ |ψ∗
)=

P(ϕ|ψ̃)TP(ψ̃ |ψ)TP(ψ |χ)T (Panel c). Each of the partial AO → MO and MO
∗ → AO

∗
cascades

involves the elementary channels of the AO-hybridization into HO, HO-orthogonalization into
OHO, and OHO-“rotation”, respectively. The (physical) AO promotion channel of Scheme 1
represents the resultant effect of a succession (Panel d) of the partial channels of Panels a-
c, P(χ

∗ |χ)= P(ϕ|χ)P(ϕ∗ |ϕ)P(χ∗ |ϕ∗
)T, consisting of seven elementary sub-channels shown in

Scheme 8.

P( ) P( ~ ) P( ~ ) P( * ) P( ~ * *) P( * *) P( * *)
~ * ~

~
* * *

P( * )

P( ~ * ~ )

P( * )

P( * )

Scheme 8. The probability-propagation ranges in the physical-promotion cascades for orbi-
tals {χ(AO),ψ(HO), ψ̃(OHO)} = {φ(s), s = 0, 1, 2}. The elementary MO-occupation sub-channel
P(ϕ

∗ |ϕ), for s = 3, is also marked as representing the physical promotion of MO in the molecule.

the output of the preceding AO → MO part of the whole AO-promotion cascade
[equation (5)],

P g
ϕ = P0

χP(ϕ|χ)= {Pg
i } ≡ P inp.

ϕ . (66)

The conditional probabilities of equations (63)–(66) and (30) also repre-
sent the elementary stages in Scheme 6, thus defining the sub-channels of the
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“chain-rule” product of equation (49), for m = 7:

P(φ(1)|φ(0))= P(ψ |χ), P(φ(2)|φ(1))= P(ψ̃ |ψ), P(φ(3)|φ(2))= P(ϕ|ψ̃),
P(φ(4)|φ(3))= P(ϕ

∗ |ϕ), P(φ(5)|φ(4))= P(ψ̃
∗
|ϕ∗
), P(φ(6)|φ(5))= P(ψ

∗ |ψ̃
∗
),

P(φ(7)|φ(6))= P(χ
∗ |ψ∗

). (67)

The corresponding cascades P(φ(s)
∗ |φ(s)), s = 0, 1, 2, 3 of equation (38), for

the physical promotion of orbitals {χ ,ψ, ψ̃,ϕ} are delineated in Scheme 8. The
bond indices generated by these effective orbital-promotion channels,

S(φ(s)
∗ |φ(s)) = −

(s)∑

m

P(s)m

(s)∑

n

P(n(s)
∗ |m(s)) log P(n(s)

∗ |m(s)),

I (φ(s) : φ(s)∗) =
(s)∑

m

P(s)m

(s)∑

n

P(n(s)
∗ |m(s)) log

[
P(n(s)

∗ |m(s))/P(s)n

]

= S(φ(s))− S(φ(s)
∗ |φ(s)),

N (φ(s);φ(s)∗) = S(φ(s)
∗ |φ(s))+ I (φ(s) : φ(s)∗)= S(φ(s))

= −
(s)∑

n

P(s)n log P(s)n , s = 1, 2, 3, (68)

describe the IT-bond-multiplicities generated at the ϕ(s)-orbital stage of the AO
transformation into MO.

8. Free-atom references

Let us now briefly comment on the initial values of the IT indices, cal-
culated for the non-scattered conditional probabilities P(0)(χ (0)|χ (0))= I, which
represent the “disconnected” AO of the free constituent atoms (A0, B0, C0, . . .)
in the promolecule M0 = (A0|B0|C0| . . .), where the vertical solid line separat-
ing the atomic labels signifies the non-bonded (disconnected, mutually closed)
status of atomic fragments. The unity normalized input probabilities P0

χ in
Scheme 1 also correspond to this reference distribution. In the promolecule the
free atoms and the AO they contribute to form the chemical bonds in the
molecule M = (A∗

¦B
∗
¦C

∗
¦ . . .), where the broken vertical lines signify the bonded

(connected, mutually open) status of AIM (A
∗
, B

∗
, C

∗
, . . .), are fragments of

the overall promolecular collection of atoms, as indeed reflected by the nor-
malization of these initial AO probabilities. It should be observed, that in the
communication theory of the chemical bond this promolecular reference carries
the overall non-vanishing information-ionicity component, equal to the Shannon



R.F. Nalewajski / Chemical bonds through probability scattering 813

entropy of P0
χ , although the associated entropy-covalency contribution identi-

cally vanishes:

S(0)(χ0|χ0)= 0 and I (0)(χ0: χ0)= N (0)(χ0;χ0)= S(χ0)= −
AO∑

l

P0
l log P0

l .

(69)

The alternative, truly non-bonded reference for diagnosing chemical-bond
multiplicities in molecular systems is provided by the collection of the infinitely
distant (separated) atoms, corresponding to the dissociation of M into the free
constituent atoms in this Separated Atom Limit (SAL): M∞ = (A0+B0+C0+. . .).
In accordance with the familiar grouping approach of IT [7, 10, 14] (see also the
Appendix), let us first consider a division of the promolecular system into the
separate atomic communication systems, characterized by the unit input signal
on each constituent atom:

AO∑

x∈X

π0
x,X = 1, X = A, B,C, . . . (70)

Here π0
X ={π0

x,X = P0(x ∈ X |X)= P0
x /P0

X } groups the ground-state conditional
probabilities of AO on the separate atom X , while the condensed probability of
X0 in M0, P0

X = ∑
x∈X P0

x = N 0
X/N , where N 0

X = Z X is the overall number of elec-
trons on neutral atom X , equal to the atomic number Z X of the nucleus.

The IT bond-indices for the individual separate channels of atomic frag-
ments in this limit explore the intra-atom “communications” measured by the
conditional probabilities of AO on the same free atom P0

X (χ
0
X

∣
∣χ0

X )= {P0
X (x

′ |x ),
x, x ′ ∈ X}, X0 = A0, B0, . . . The entropy/information indices of the separated
atoms in AO resolution read:

S(0)X (χ0
X |χ0

X ) = −
∑

x∈X

P0(x |X )
∑

x ′∈X

P0
X (x

′ |x ) log P0
X (x

′ |x )= S(χ0
X ,χ

0
X )− S(χ0

X ),

I (0)X (χ0
X : χ0

X ) =
∑

x∈X

P0(x |X )
∑

x ′∈X

P0
X (x

′ |x ) log
P0

X (x ′ |x )
P0(x ′ |X ) = S(χ0

X )− S0
X (χ

0
X |χ0

X ),

N (0)
X (χ0

X ;χ0
X ) = S(0)X (χ0

X |χ0
X )+ I (0)X (χ0

X : χ0
X )= S(χ0

X ) ≡ −
AO∑

x∈X

π0
x,X log π0

x,X ,

(71)

where the S(χ0
X , χ0

X ) denotes the Shannon entropy of equation (23) for the joint
(two-AO) probabilities P(χ0

X ,χ
0
X )= {P0

X (x, x ′)= P0(x |X )P0
X (x

′ |x ), x, x ′ ∈ X},
normalized to orbital probabilities π0

X :
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∑

x ′∈X

P0
X (x, x ′)= P0(x |X )=π0

x,X . (72)

However, since 〈x |x ′〉 = δx,x ′ and the AO occupations of the (ground-state) free
atoms are fixed, the intra-atomic conditional probabilities P0

X (χ
0
X

∣
∣χ0

X )= IX and
hence:

S(0)X (χ0
X |χ0

X )= 0 and I (0)X (χ0
X : χ0

X )= N (0)
X (χ0

X ;χ0
X )= S(χ0

X ). (73)

The above entropy/information quantities characterize the isolated atomic
systems, in the absence of all remaining atoms of the promolecule. In order to
generate the corresponding quantities characterizing the collection of the infi-
nitely-distant, separated atoms in M∞, the quantities of equation (71) have to
be combined using the appropriate grouping rules of IT (see the Appendix),
with the overall (group) probabilities P0

AIM = {P0
X } providing the promolecular

weights of the free atomic subsystems:

S(∞)(χ0|χ0) = −
∑

X

P0
X

∑

x,x ′∈X

P0(x |X )P0
X (x

′ |x ) log P0
X (x

′ |x )

=
∑

X

P0
X S(0)X (χ0

X |χ0
X )= 0,

I (∞)(χ0 : χ0) =
∑

X

P0
X

∑

x,x ′∈X

P0(x |X )P0
X (x

′ |x ) log
P0

X (x
′ |x )

P0
X P0(x ′ |X )

=
∑

X

P0
X I (0)X (χ0

X :χ0
X )

= S(χ0)− S(∞)(χ0|χ0)= S(χ0),

N (∞)(χ0;χ0) = S(∞)(χ0|χ0)+ I (∞)(χ0: χ0)= S(χ0), (74)

where we have observed that the Shannon entropy of AO in a collection of separated
atoms is again given by the promolecular entropy of equation (26) and (69):

S(∞)(χ0) ≡ −
∑

X

∑

x∈X

[P0
X P0(x |X )] log[P0

X P0(x |X )]

= −
∑

k

P0
k logP0

k = S(χ0). (75)

These entropy/information descriptors of atomic subsystems in M∞ mea-
sure the internal IT-covalency, IT-ionicity, and overall IT-index of the free atoms
in the dissociation limit, against which the corresponding molecular quantities,
describing bonded atoms, can be compared.

In a separate analysis the present development will be applied to diatomics
using both the minimum basis set ab initio calculations and realistic model con-
siderations. The orbital models have been selected to get a better insight into a
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Table 1
The entropy/information descriptors (in bits) of the AO-promotion channels for the minimum basis

sets of the canonical AO of the free atoms in the promolecular and SAL references.

Atom Promolecule: Dissociation SAL:
(A0|B0) promolecule: (A0 + B0) A0 + B0

S(0)X I (0)X , N (0)X S(0) I (0), N (0) S(∞) I (∞) N (∞) SSAL I SAL, N SAL

H0 0.00 0.00 (H0|H0) 0.00 1.00 (H0+H0) 1.00 0.00 1.00 H0+H0 0.00 0.00
Li0 0.00 0.92 (Li0|H0) 0.00 1.50 (Li0+H0) 0.81 0.69 1.50 Li0+H0 0.00 0.92
C0 0.00 1.92 (H0| F0) 0.00 2.52 (H0+ F0) 0.47 2.05 2.52 H0+ F0 0.00 2.28
O0 0.00 2.25 (Li0| F0) 0.00 2.75 (Li0+ F0) 0.81 1.94 2.75 Li0+ F0 0.00 3.20
F0 0.00 2.28 (C0| O0) 0.00 3.09 (C0+ O0) 0.98 2.11 3.09 C0+ O0 0.00 4.17

relative importance of the familiar effects of the effective AO promotion due to:
electron excitation and/or AO hybridization, orthogonality, and their mixing into
MO. The selected diatomics exhibit both single (H2, LiH, HF, LiF) and multiple
(CO) chemical bonds. They involve different numbers of the valence- and inner-
shell lone pairs of electrons on constituent atoms, and cover the sp-hybridization
effects (HF, LiF, CO). In Table 1 we have listed the representative values of the
reference quantities for constituent free atoms of these illustrative diatomics.

It follows from the table that the overall bond-index of the promolecular,
(A0|B0) and (A0 + B0), channels of the AO promotion in free atoms is con-
served, in accordance with equations (69) and (74). Only the entropy-covalency
and information-ionicity are redistributed for this preserved sum of the two bond
components. It should be observed that the finite conditional-entropy contribu-
tion in the dissociation-promolecule represents the “group” entropy, of atomic
fragments in the collection of all dissociated atoms, while the intra-group entro-
pies S(0)X identically vanish since P0(χ0|χ0)={P0

X (χ
0
X

∣
∣χ0

X )δX,Y } = I.
Yet another free-atom reference is provided by the sum of communication

channels for isolated atoms, MSAL = A0 + B0 + C0 + . . ., with each atomic sub-
system processing the unit input signal, thus representing a separate communica-
tion channel. These true-SAL indices are generated by the sums of atomic indi-
ces of equation (73). A reference to Table 1 shows that these dissociation-limit
quantities exhibit the vanishing conditional entropy index and generally higher
mutual-information ionicities, compared to those for (A0 + B0), due to the miss-
ing weights P0

AIM.
These promolecular and SAL reference states of the mutually non-bonded

(disconnected) atoms correctly predict the vanishing entropy-covalency of the
separate atomic communication systems of free-atoms, while in the dissociation-
promolecule, in which the free-atoms communicate the atom-assignment signals
as whole condensed (IT-reduced) units at the inter-atom stage of the proba-
bility grouping, the finite entropy-covalency reflects the free atom being a part
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of a larger system. Therefore, in IT this reference channel cannot be consid-
ered as representing truly non-bonded atoms, since it allows for the condensed
(“reduced”) communications between the free-atoms.

To summarize, in the communication-theory approach to chemical bonds
these reference states on non-bonded atoms are distinguished by the input “sig-
nal” and/or the atomic grouping of AO probabilities. As a result they all can be
distinguished by different sets of the initial entropy/information descriptors, with
respect to which the proper bonding contributions to IT indices can be extracted
in the appropriately defined difference measures of bond multiplicity.

9. Difference approach to entropic bond indices

In this section we shall briefly examine relative bond descriptors, measur-
ing the difference between the IT bond-orders for communication channels of
the effective promotion of AO in a given molecular system, and those describ-
ing the promolecular reference system, consisting of the “frozen” electron distri-
butions of isolated atoms brought to their respective positions in the molecule.
Such difference measures reflect the bonding effects due to the actual chemical
interactions between AIM. Similar difference approaches have also been used in
the past, e.g., in designing the bond-orders from changes in the two-electron den-
sity matrix [22–28], and in generating the familiar density-difference diagrams for
diagnosing the effects due to chemical bonds. Also, it should be recalled that the
atomic promolecule plays a vital role in justifying the “stockholder” partitioning
[29] of the molecular electron density into the localized AIM contributions, by
using the minimum entropy-deficiency principle of IT [32–38].

Consider the following displacements of the molecular IT bond indices rel-
ative to their initial values for the covalently non-bonded (disconnected) atoms
of the system atomic promolecule [see equations (22a)–(27a)]:

�S(χ
∗ |χ) = S(χ

∗ |χ)− S(0)(χ0|χ0)= S(χ
∗ |χ)= S(χ

∗
),

�I (χ0: χ ∗
) = I (χ0: χ ∗

)− I (0)(χ0: χ0)= I (χ0: χ ∗
)− S(χ0)= − S(χ

∗
),

�N (χ0;χ ∗
) = N (χ0;χ ∗

)− N (0)(χ0;χ0)=�S(χ
∗ |χ)+�I (χ0: χ ∗

)

= S(χ
∗
)− S(χ

∗
)= 0. (76)

Therefore, the displacement measure of the total IT bond-order, �N (χ0;χ ∗
),

vanishes identically, with the Shannon entropy of the effective probabilities of
AO in the molecule determining both �S(χ

∗ |χ0) and |�I (χ0: χ ∗
)|. The negative

value of the relative information-ionicity reflects the fact that due to the chem-
ical “noise” in the molecule the amount of information flowing in the physical
AO-promotion channel is lower than the maximum value S(χ0) characterizing
the noiseless promolecule. By the same amount increases the average communi-
cation noise, measuring the bond entropy-covalency created by this probability
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scattering. It manifests the extra uncertainty in the electron distributions among
AO, compared to that already present in the promolecular electron distribution
in the AO resolution. This effect of an electron-delocalization among all avail-
able AO of the adopted basis set, via the system occupied MO, which amounts
to the AO-promotion in the molecular channel, has indeed been intuitively asso-
ciated by chemists with the very notion of the covalent chemical bond.

Of interest also are relative bond-contributions due to each elementary
probability-scattering step 1 � s � m (see Sect. 4.2) in the series of molecular
reconstructions of electron probabilities, which ultimately generates the resultant
probabilities of the promoted AO [see Schemes 6, 7, and equations (55), (60),
(61)]:

�S(χ
∗ |χ)=

m∑

t = 1

St , �I (χ0: χ ∗
)=

m∑

t = 1

It = −�S(χ
∗ |χ),

�N (χ0;χ ∗
)=

m∑

t = 1

Nt = 0, (77)

These additive contributions to the overall difference measures of equation (76)
reflect the stage-to-stage evolution of the cumulative bond indices of equation
(52):

S(s) = S(0)(χ0|χ0)+
s∑

t = 1

St =
s∑

t = 1

St ,

I (s) = I (0)(χ0: χ0)+
s∑

t = 1

It = S(χ0)+
s∑

t = 1

It = S(φ(s))− S(s),

N (s) = N (0)(χ0: χ0)+
s∑

t = 1

Nt = S(χ0)+
s∑

t = 1

Nt = S(φ(s)), s = 1, 2, . . .,m,

(78)

exhibiting a monotonic increase in S(s) and the accompanying decrease in I (s),
which together determine at each stage the overall index of the IT bond-multi-
plicity at the S(ϕ(s)) level. These displacements in the bond-components gener-
ated by either the populational promotion or an effective mixing of orbitals due
to their hybridization, orthogonalization, forming MO, etc., should allow one to
evaluate relative roles played by these specific elementary processes in forming
the system chemical bonds.

An alternative perspective on the entropy/information descriptors associ-
ated with the specific sets of orbitals φ(s), s = 0, 1, 2, 3, of Sect. 7, follows
from the φ(s)-promotion channels [see equation (38) and Schemes 4b, 8]. Now,
instead of focusing on each elementary step in the probability-propagation
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P( ~ ) P( ~ ) P( ∗~ *) P( * )
~ * ∗

∗

*

P( * )

P( ∗~ ~ )

P( * )

Scheme 9. The physical promotion of the overlapping orbitals in the 2-AO model of a chemical
bond.

chain of Scheme 8, one first seeks the IT-indices of equation (68), for the
φ(s)→ (ϕ→ϕ

∗
)→φ(s)

∗
(physical) promotion in the molecule. The differences

between these entropy/information indices describing the consecutive sets of
orbitals for s = 1, 2, 3, i.e., AO, HO, OHO, and MO,

�S(φ(s)
∗ |φ(s)) = S(φ(s)

∗ |φ(s))− S(φ(s−1)∗ |φ(s−1))= Ss + Sm−s+1,

�I (φ(s) : φ(s)∗) = I (φ(s) : φ(s)∗)− I (φ(s−1) : φ(s−1)∗)= Is + Im−s+1

= [S(φ(s))− S(φ(s−1))] −�S(φ(s)
∗ |φ(s))

≡ �S(φ(s))−�S(φ(s)
∗ |φ(s)),

�N (φ(s);φ(s)∗) = N (φ(s) : φ(s)∗)− N (φ(s−1);φ(s−1)∗)

= �S(φ(s)
∗ |φ(s))+�I (φ(s) : φ(s)∗)

= Ns + Nm−s+1 =�S(φ(s)), (79)

then measure the bond components due to physical promotion of χ (s−1), com-
pared to those already present in the information channel for the molecular pro-
motion of χ (s).

These entropy/information displacements provide complementary IT-indi-
ces of the bond-order contribution due to the φ(s−1)→φ(s) and φ(s)

∗ →φ(s−1)∗

steps in the series of Scheme 8. It should be emphasized, however, that con-
trary to the difference measures Ss, Is , and Ns [equations (55), (60) and (61)],
which describe a single elementary step in the molecular probability propagation
in Scheme 8, the entropy/information displacements of equation (79) characterize
the above mentioned two steps involved in the molecular promotion of orbitals
φ(s−1), which are missing in the promotion of orbitals φ(s).

We finally observe that the conditional probabilities P(φ(s)
∗ |φ(s)) [equation

(38)] reflect the physical promotion of orbitals φ(s)
∗

in the molecule, via the sys-
tem occupied MO, while the noiseless (geometric) matrix Pg(φ(s)

∗ |φ(s))= I rep-
resents the disconnected orbitals φ(s). The latter define yet another reference for
calculating the difference IT indices. The reference entropy/information quanti-
ties determined by this separate-orbital channel, with the input and output prob-
abilities P (s)

φ = P0
χP(φ(s)|χ)= P (s)

φ Pg(φ(s)
∗ |φ(s))= {P(s)m }, are:
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Sg(φ(s)
∗ |φ(s)) = 0, I g(φ(s) : φ(s)∗)= N g(φ(s);φ(s)∗)= S(φ(s))

= −
(s)∑

m

P(s)m log P(s)m . (80)

This geometric φ(s)-reference is thus characterized by the vanishing entropy-
covalency and the information-ionicity and overall IT index reproducing the
Shannon entropy contained in the input probability at stage s, shaped by all
preceding orbital transformation stages 0 < t < s. This channel effectively
removes all bond contributions due to steps s+1, s +2, . . . ,m − s in the series of
Scheme 6. The relative IT-indices with respect to the reference values of equation
(80), describing the disconnected (geometric) φ(s)-reference channel of truly non-
bonded orbitals φ(s), thus reflect changes due to chemical bonds due the elec-
tron delocalization among these orbitals in the molecule, via the system occupied
MO. The associated difference measures of the overall entropy-covalency, infor-
mation-ionicity read [see equation (68)]:

�Sg(φ(s)
∗ |φ(s)) = S(φ(s)

∗ |φ(s))− Sg(φ(s)
∗ |φ(s))= S(φ(s)

∗ |φ(s))
=

m−s∑

t = s+1

Ss = S(m−s) − S(s),

�I g(φ(s) : φ(s)∗) = I (φ(s) : φ(s)∗)− I g(φ(s) : φ(s)∗)
= I (φ(s) : φ(s)∗)− S(φ(s))= − S(φ(s)

∗ |φ(s)),
�N g(φ(s);φ(s)∗) = N (φ(s);φ(s)∗)− N g(φ(s);φ(s)∗)

= �Sg(φ(s)
∗ |φ(s))+�I g(φ(s) : φ(s)∗)= 0. (81)

Again, these relative entropy/information descriptors are seen to give rise to the
vanishing total index �N g(φ(s);φ(s)∗)= 0.

10. Single chemical bond from two non -orthogonal AO

In Sect. 3 we have summarized the communication channel of the phys-
ical and geometric promotions, due to a chemical interaction between two
OAO,χ̃ = (χ̃A, χ̃B) ≡ ( Ã, B̃), which represent the symmetrically (Löwdin) orthog-
onalized analogs the overlapping AOχ = (χA, χB) of two atoms (A, B). In this 2-
OAO model of a single chemical bond the physical promotion of the basis orbi-
tals counts only the χ̃ →ϕ→ϕ

∗ → χ̃
∗

steps in the overall chain of the molecular
probability propagation shown in Scheme 9, thus neglecting the two AO orthog-
onalization/de-orthogonalization steps χ → χ̃ and χ̃

∗ →χ
∗
, respectively, of the

effective AO-promotion in the molecule. It is the main purpose of this section
to examine the effect of this hitherto missing stages on the overall bond-multi-
plicity and its IT covalent/ionic composition.
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The non-orthogonal (normalized) AO give rise to the non-diagonal over-
lap matrix Sχ =〈χ |χ〉 �= I. Its eigenvalue (diagonalization) problem determines
the matrices S±1/2

χ , which represent transformations between AO and OAO,
χ = χ̃S1/2

χ , χ̃ =χS−1/2
χ , e.g.,

Sχ =
[

1 S
S 1

]

, S > 0; UTSχU = s = {siδi, j } =
[

1 + S 0
0 1 − S

]

,

U = 1√
2

[
1 1
1 −1

]

; S1/2
χ = U s1/2UT =

[
a b
b a

]

, a = 1
2

(
s1/2

1 + s1/2
2

)
,

b = 1
2

(
s1/2

1 − s1/2
2

)
. (82)

It again follows from the superposition principle of quantum mechanics
that the squares of elements in S1/2

χ ≡ {σk̃,l} determine the probabilities of AO
conditional on OAO:

P(χ |χ̃) = P(χ
∗ |χ̃ ∗

)= {P(l|k̃)= σ 2
k̃,l

} =
[

c d
d c

]

= P(χ̃ |χ)T,

c = 1/2(1 +
√

1 − S2), d = 1/2(1 −
√

1 − S2)= 1 − c. (83)

In Scheme 10 we have summarized the relevant communication channels of
the physical AO-promotion in the complete model of the AO-orthogonalization
augmented channel of Scheme 2(b, c). A reference to this scheme shows that the
molecularly promoted probabilities of AO, which result from scattering of the
assumed molecular probabilities of OAO, Pχ̃ = (P, Q) [see equation (33)],

P
∗
χ = (P∗

A, P
∗
B = 1 − P

∗
A)= Pχ̃P(χ

∗ |χ̃ ∗
)= (Pc + Qd, Pd + Qc), (84)

fully determine the effective conditional probabilities [see equation (83) and
Scheme 2, for P(χ̃

∗ |χ̃)]

P(χ
∗ |χ)= P(χ̃ |χ)P(χ̃ ∗ |χ̃)P(χ ∗ |χ̃ ∗

)=
[

P
∗
A P

∗
B

P
∗
A P

∗
B

]

, (85)

thus giving rise to the IT-indices of the resultant channel listed in Scheme 10.
The AO → OAO (s = 1, orthogonalization) stage (see Scheme 11) in the

covalent-channel of Scheme 10b must produce the output probabilities

Pχ̃ = (P, Q) ≡ P inp.
χ P(χ̃ |χ). (86)

Therefore, its input probabilities read:

P inp.
χ = (P̃, Q̃)= Pχ̃P(χ̃ |χ)−1

= (c2 − d2)−1(Pc − Qd, Qc − Pd), P̃ + Q̃ = 1. (87)
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½ A c A
~ P ∗

A
~     c ∗

Aχ        Pc + Qd = ∗
AP  (a)

d     Q     d 
d P      d 

½ B c B
~ Q ∗

B
~     c *

Bχ        Pd + Qc = ∗
BP =1– ∗

AP

AP
~

A
∗
AP *

Aχ ∗
AP  (b)

1– ∗
AP
∗
AP

BP
~

B 1– ∗
AP *

Bχ 1– ∗
AP S( ∗ ) = H( ∗

AP )

½ A
∗
AP *

Aχ ∗
AP  I ( 0 : ∗ ) = 1– H( ∗

AP )               (c)
1– ∗

AP
∗
AP ________________________________

½ B 1– ∗
AP 1– ∗

A
*
Bχ P N( 0 ; ∗ ) = S( ∗ ) + I( 0 : ∗ ) = 1

Scheme 10. The physical AO-promotion in the ground-state of the 2-AO model (non-orthog-
onal orbitals) for the non-diagonal representation of the MO-occupation sub-channel (com-
pare Scheme 2). The corresponding bond components, the entropy-covalency S(χ

∗ |χ), from
Panel b, and information-ionicity I (χ0:χ∗

), from Panel c, conserve the single-bond multiplicity:
N (χ0;χ∗

)= S(χ
∗ |χ)+ I (χ0 : χ∗

)= S(χ0)= 1.

~
A c A

~          P 
d
d

Q

P

~
B c B

~ Q S( ~ ) = H(c)

Scheme 11. A single orthogonalization step χ → χ̃ , for s = 1, in the covalent AO-promotion chain
giving rise to the conditional entropy (IT covalency) S(χ̃ |χ)= H(c).

It follows from the diagrams of Scheme 10 that, have the overlap depen-
dent probabilities of equation (84) been determined, the binary entropy func-
tion H(P

∗
A) determines the channel conditional entropy (IT-covalency), while its

complement to the preserved 1 bit of the overall IT bond-order, 1− H(P
∗
A), mea-

sures the channel mutual information (IT-ionicity). Therefore, the orbital over-
lap S does not influence predictions for the symmetric bonding MO, for which
P

∗
A = P

∗
B = 1/2 and hence S(χ

∗ |χ)= H(1/2)= 1 bit and I (χ0 : χ ∗
)= 0. One thus

correctly predicts in this symmetric case a single, purely covalent bond, e.g., the
σ bond in H2 or the π bond in ethylene.

In Table 2 we have examined how the controlled degree of the AO
non-orthogonality, reflected by the overlap integral S = 〈χA|χB〉, influences the
entropy-covalency of the full molecular channel of Scheme 10 for the physical
AO promotion in the model ground-state, compared to Scheme 2, which reflects
only its χ̃ →ϕ→ϕ

∗ → χ̃
∗

stages. This analysis has been carried out for three
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Table 2
The effects of the non-vanishing overlap between AO, S = 〈χA|χB〉, and the MO-polarization
parameter P measuring the conditional probability P( Ã|b) [see equation (33)], on the predicted
output probability P

∗
A and the entropy-covalency H(P

∗
A) (in bits) in the 2-AO model of a single

chemical bond A—B.

P = 0.6, H(P)= 0.971 P = 0.75, H(P)= 0.811 P = 1, H(P)= 0

S c(S) P
∗
A H(P

∗
A) S5 = − I1 P

∗
A H(P

∗
A) S5 = − I1 P

∗
A H(P

∗
A)= H(c)= S5 = − I5

0.1 1.00 0.599 0.971 −0.946 0.749 0.813 −0.786 0.998 0.025
0.2 0.99 0.598 0.972 −0.889 0.745 0.819 −0.729 0.990 0.082
0.3 0.98 0.595 0.974 −0.813 0.739 0.829 −0.653 0.977 0.158
0.4 0.96 0.592 0.976 −0.721 0.729 0.843 −0.561 0.958 0.250
0.5 0.93 0.589 0.978 −0.616 0.717 0.860 −0.456 0.933 0.355
0.6 0.90 0.580 0.982 −0.502 0.700 0.881 −0.342 0.900 0.469
0.7 0.86 0.571 0.985 −0.379 0.679 0.906 −0.219 0.857 0.592
0.8 0.80 0.560 0.990 −0.249 0.650 0.934 −0.089 0.800 0.722
0.9 0.72 0.544 0.995 −0.113 0.609 0.966 0.047 0.718 0.858

illustrative polarizations of the bonding MO, as reflected by parameter P > 1/2
[equation (33)] measuring the probability of χ̃A in the occupied (bonding) MO,
with atom A representing the acidic (acceptor) AIM in a diatomic:

P ={0.6 (weak polarization), 0.75 (medium polarization),

1 (total polarization into ion-pair, A−B+)}.
A reference to this table indeed shows that for a growing weight P of atom A the
index H(P), measuring the bond OAO-covalency, gradually decreases reaching
zero for the ion-pair configuration, which exhibits a lone electron pair on acidic
atom A.

It should be observed that probabilities of equation (84) also reflect the
exit probabilities of a single de-orthogonalization step χ̃

∗ →χ
∗

of Scheme 12,
for s = 5, in the overall sequence χ → χ̃ →ϕ→ϕ

∗ → χ̃
∗ →χ

∗
consisting of

m = 5 elementary stages. Its conditional-entropy index H(c), identical with that
characterizing the orthogonalization step for s = 1 (Scheme 11), reflects the
resultant IT-covalency of equation (52) for s = 5. It also follows from equa-
tion (84) that for the ultimate MO polarization P = 1(Q = 0) of the ion-pair
A−B+:P∗

A(P = 1)= c and P
∗
B(P = 1)= d. Hence, for the current value of the

overlap integral S, the entropy H(P
∗
A(S)) in the last column of Table 2 is equal

to H(c(S)).
A comparison between the H(P) and H(P

∗
A) entries in the table reveals that

with increasing overlap between the two AO the peripheral (orthogonalization)
steps s = (1, 5) in the chain of Scheme 9 create an increasing amount of the extra
entropy-covalency (communication noise) in the AO-promotion channel, com-
pared to that already present in the OAO-promotion case. This effect is strength-
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P ∗
A

~ c *
Aχ ∗

AP  
d
d

Q ∗
B

~ c *
Bχ ∗

BP S( ∗ ∗~ ) = H(c)

Scheme 12. A single de-orthogonalization step χ̃
∗ →χ

∗
, for s = 5, in the AO-promotion chain giv-

ing rise to the conditional entropy (IT covalency) S(χ
∗ |χ̃∗

)= H(c).

ened still further, when the MO polarization gradually increases, being the stron-
gest in the limiting case of the ion-pair configuration, for which the bond cova-
lency of the mutually orthogonal orbitals identically vanishes. One also observes
a steadily growing erosion of differences in the OAO probabilities (P, Q = 1−P).
They become more equalized in the AO representation, (P

∗
A, P

∗
B = 1 − P

∗
A). This

creates an extra uncertainty in the electron distribution between the two AO,
compared to OAO. It is responsible for the above mentioned growth in the IT-
covalency in the AO-promotion channel, which includes the two orthogonaliza-
tion steps.

To summarize, the more the two atomic orbitals overlap, the more the
Löwdin orbital probabilities of OAO differ from those characterizing the pro-
moted AO, with the latter exhibiting an increasing degree of equalization and
hence - more entropy-covalency. With respect to OAO the overlapping orbitals
thus exhibit an extra delocalization of electrons between the two atoms. One
would indeed expect this effect to be felt most in the extreme MO-polariza-
tion case, for which both electrons occupy the OAO of the acidic atom A, thus
giving rise the vanishing IT-covalency at the OAO stage of the orbital promo-
tion. Moreover, this orthogonalization increment for P = 1, when ϕb = χ̃A and
ϕb = χ̃B , has to be always positive (increasing the electron uncertainty), since it
implies a displacement from the perfectly orbital-localized distribution of two
electrons towards a partly delocalized pattern.

For a weak polarization of the bonding MO, this extra spreading of elec-
trons between the two atomic orbitals remains relatively small, particularly in
the small overlap regime, with the distribution of electrons between AO being
somewhat constrained by a near-symmetry of the system electronic Hamilto-
nian. The orbital probabilities P

∗
A

∼= P
∗
B

∼= 1/2 are then in the vicinity of the
maximum of the binary entropy function for H(P

∗
A = 1/2), where it changes

very slowly. The strong effect of the AO orthogonalization on the resultant
IT bond-entropies is observed in the limiting case of the ion-pair configura-
tion in the OAO-representation, which corresponds to the fast-changing region
of H(P

∗
A � 1).

Next, let us examine the relevant entropy-information descriptors character-
izing the orthogonalization/de-orthogonalization steps alone. The input (promo-
lecular) probabilities P0

χ = (1/2, 1/2) determine the initial amount of information
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H(1/2)= 1 bit, at the start of the probability cascade of Scheme 10a. At this
s = 0 stage, S(0)= 0, since there has been no information-loss at the (absent) pre-
ceding steps; also, I (0)= 1, since the whole initial amount of information of the
ionic channel (Scheme 10c), S(χ0)= 1, is available at the start of the AO-promo-
tion cascade.

Similarly, at the exit of the first, orthogonalization step in the probability
propagation cascade:

S(1)= S(φ(1)|φ(0))= H(c), I (1)= I (φ(0) : φ(1))= 1 − H(c),

N (1)= S(1) + I (1)= 1. (88)

The first quantity measures the information-dissipation in the elementary
channel of Scheme 11, while the second, complementary index reflects the
amount of information which survives the communication noise created by this
orthogonalization step. Hence, these s = 1 quantities determine the correspond-
ing increments due to a single orthogonalization stage:

S1 = S(1) − S(0)= S(1), I1 = I (1) − I (0)= − S(1),

N1 = N (1) − N (0)= S1 + I1 = 0. (89)

These displacements are seen to conserve the overall bond-order N (0)= N (1)= 1
bit, or N1 = 0.

These entropy/information increments refer to the promolecular input P0
χ ,

used in Scheme 10(a, c). Should the effective probabilities P inp.
χ of equa-

tion (87) be used in the input of step s = 1, e.g., in the single, molecu-
lar-channel approach to estimate the average noise and the mutual infor-
mation quantities (see Scheme 10b), the input information content H(P̃A)

would then be partly scattered to the amount S(1)(P̃A)= H(c) and partly pre-
served to the amount I (1)(P̃A)= H(P̃A)−H(c), thus again conserving the over-
all entropy index: N (1)(P̃A)= S(1)(P̃A) + I (1)(P̃A)= H(P̃A). The corresponding
entropy/information increments due to step s = 1, relative to S(0)(P̃A)≡ 0 and
I (0)(P̃A)≡ H(P̃A) then read: S1(P̃A)= S(1)(P̃A)−S(0)(P̃A)= H(c), I1(P̃A)= I (1)(P̃A)

− I (0)(P̃A)= − H(c), and hence again N1(P̃A)= S1(P̃A)+ I1(P̃A)= 0.
The “reverse”, de-orthogonalization step, from the assumed probabilities

of OAO, Pχ̃ = (P, Q), to those describing the overlapping AO (see Scheme 11)
in the molecule, P

∗
χ = (P∗

A, P
∗
B), gives the molecular estimate of the information

noise S(5)= S(χ
∗ |χ̃ ∗

)= H(c), which diminishes the initial information content
S(χ̃)= H(P), thus predicting the surviving fraction I (5)= I (χ̃

∗ : χ ∗
)= H(P) −

H(c) of the initial information H(P) contained in P χ̃ , which marks the stage
overall bond-order.

The IT-covalency index of the last sub-channel in the sequential series also
represents the resultant covalency of the AO-promotion cascade. The resultant
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conditional-probabilities for the series s = 1 ÷ 4, ending with the preceding step
s = 4, is determined by the product

P(χ̃
∗ |χ )= P(χ̃ |χ)P(χ̃ ∗ |χ̃)=

[
P Q
P Q

]

, (90)

which generates S(4)= H(P) (see Scheme 2b). Therefore, the increment of the
conditional entropy index in the last, de-orthogonalization step reads:

S5 = S(5) − S(4)= H(c)− H(P). (91)

Hence, since H(1)= 0, the last column in Table 2 also reflects the increments S5
for the ion pair electron configuration.

It follows from Table 2 that this de-orthogonalization increment S5, for
the χ̃

∗ →χ
∗

step of the probability propagation in the model, exhibits negative
sign at small and medium MO-polarizations, for both small and large overlap
S between the two atomic orbitals. It implies that the representative covalen-
cy index associated with this step alone lowers the system conditional-entropy
component, thus increasing the complementary descriptor of the mutual-infor-
mation. Indeed, as one observes in Table 2, that for P = (0.6, 0.75) the two com-
plementary conditional-probabilities of equation (83), [c(S), d(S)= 1 − c(S)],
are in general [except for the (S = 0.9, P = 0.75) case] distinctively more differ-
entiated than P χ̃ = (P, Q), and hence: H(c)< H(P). In the ion-pair case the
opposite is true, thus giving rise to the positive de-orthogonalization incre-
ment of the IT-covalency in the model. The first of these conditional proba-
bilities measures the probability of electron surviving on the orbital in ques-
tion, c = P(χ∗

A|χ̃ ∗
A)= P(χ∗

B |χ̃ ∗
B), while the other represents the scattering proba-

bility: d = P(χ∗
B |χ̃ ∗

A)= P(χ∗
A|χ̃ ∗

B). It follows from Table 2 that c> d, so that in
the orthogonalization channels the electron survival on a given orbital is more
probable than its transfer to the other orbital.

11. Conclusion

This development of the communication theory of the chemical bond in
orbital resolution has explored several resultant information cascades and their
elementary channels for intermediate sets of orbitals, e.g., OAO, HO (OHO),
etc. The entropy/ information descriptors of these communication networks have
been proposed as bond-indices for the familiar stages in terms of which the
electronic structure of molecules is interpreted by chemists. In particular, the
entropy/information increments of the covalent and ionic bond components at
each intermediate step of the resultant orbital transformation, from AO to MO,
have been examined. The sequential cascades of the probability (information)
scattering in molecular systems have been designed for typical orbital-transfor-
mation steps in ab initio calculations. They allow one to describe the physical
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promotion of these orbital-intermediates, thus characterizing the role of these
sets of orbitals in shaping the resultant bonding-patterns in the molecule. The
IT-indices for each step alone similarly index the stage-to-stage evolution of the
entropy/information bond-orders in the molecular ground-state.

The illustrative application to the two-orbital model of a single bond has
extracted specific channels and the associated bond contributions due to the
orbital overlap. This effect has been discussed in the past, e.g., within the
Valence-Bond theory. It has been demonstrated that for the symmetrical bond
in H2 or the π bond in ethylene the IT predictions from the molecular orbital-
promotion channels in the overlapping AO representation are the same as those
in the orthogonal OAO representation. It has been shown that both the bond
polarization and a degree of the orbital overlap influence these orbital-orthogo-
nalization contributions to the entropy/information bond indices measuring the
effective AO promotion in molecules. They increase bond-covalency, measured
by the average information noise, and diminish bond-ionicity, reflected by the
mutual information between the promolecular and molecular AO probabilities.
This effect is particularly strong in the pure-ionic bond in the OAO representa-
tion.

The stage-additivity rule for consecutive series of molecular sub-channels
has been compared with the grouping (combination) principles for the parallel
arrangement of partial molecular channels [10, 14]. In the spirit of the predom-
inant chemical thinking, which views the chemical bond as the difference-phe-
nomenon, relative to the promolecular reference of a collection of free atoms,
the bond-indexing has also been approached from this relative perspective, with
the novel IT-indices now measuring displacements relative to the corresponding
promolecular values.

In the future studies these alternative sources of the orbital promotion of
orbitals in bonded atoms will be investigated using both ab initio calculations
and more realistic semi-qiantitative models in terms of hybrid orbitals, which
realistically represent chemical bonds in selected diatomics, for which interpreta-
tions of both the bond character and its multiplicity are well understood in the
MO theory.

It would be particularly interesting to examine the effect on the overall
bond descriptors of typical features of the molecular electronic structure, e.g.,
the presence of a single or multiple chemical bonds, lone electron pairs of the
valence and/or core electrons, etc. The contributions to the IT bond multiplicities
due to specific “displacements” in the orbital shapes and/or occupations could be
also extracted, in order to evaluate the relative importance of the intermediate
orbitals and their displaced occupations for the resultant pattern of the system
chemical bonds and their covalent/ionic composition.
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Appendix: Parallel arrangement of information sub-channels

As a comparison to the simplest sequential series of two elementary sub-
channels, which we have examined in Sect. 6, let us briefly summarize the corre-
sponding results for the parallel arrangement of figure A1. The separate (discon-
nected) sub-channels I and II of its Panel a, generated by the intra-group con-
ditional probabilities PI(B I|AI) and PII(B II|AII), respectively, are subsequently
combined in a parallel manner [10, 14] into a single channel of Panel b, defined
by the effective conditional probabilities PIII(B |A). In the combined parallel
channel the input group probabilities, P G = (PI, PII)= (λ, 1−λ), reflect the over-
all probabilities of each subsystem in the system as a whole. Therefore, the nor-
malized input and output probabilities of the combined channel read:

A(λ)= [λAI, (1 − λ)AII], (A1)

B(λ)= [λAIPI(B I|AI), (1 − λ)AIIPII(B II|AII)] = [λB I, (1 − λ)B II]. (A2)

Hence, the conditional probabilities PIII(B |A) of the combined channel,

A(λ)PIII(B |A)= B(λ), (A3)

assume the block-diagonal form:

PIII(B |A)=
⎡

⎣
PI

(
B I

∣
∣AI

)
0

0 PII

(
B II

∣
∣AII

)

⎤

⎦ , (A4)

marking the inter-group disconnected communication network of figure A1b.
Such parallel arrangements of elementary channels has already been dis-

cussed elsewhere [7, 10, 14], within the fragment development of the molecu-
lar information channels in atomic resolution, where the relevant grouping rules
for the overall IT bond indices in terms of these describing molecular fragments
have been established. This parallel scenario would be also called for within the
localized-orbital resolution of bonded atoms, e.g., the stockholder AIM [16].

These combination rules are in the spirit of the group-resolved expression
for the Shannon entropy of the input-probabilities of equation (A1):

S(A(λ)) = −
∑

α= I,II

∑

k∈α
PαP(k |α ) log[PαP(k |α )]

= −
∑

α= I,II

Pα log Pα −
∑

α= I,II

Pα
∑

k∈α
P(k |α ) log P(k |α )

≡ S(P G)+ [λS(AI)+ (1 − λ)S(AII)], (A5)
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(a) (b)

AI PI(B
I AI) BI AI PI(B

I AI) BI

AII PII(B
II AII) BII      (1 )AII PII(B

II AII) (1 )BII

A( ) PIII(B A) B( )

Figure A1. The parallel arrangement of two partial (disconnected) information systems (Panel a),
defined by the intra-group conditional probabilities PI(B I |AI) and PII(B II|AII), respectively, into
the combined information system (Panel b), characterized by PIII(B |A). The inputs(outputs) of the
parallel system combine those of separate subsystems. It should be observed that the normalized
input probabilities AI = {AI

i } and AII ={AII
j } of the separate sub-channels represent the conditional

(intra-group) probabilities in the combined system: AI
i ≡ P(i |I) and AII

j ≡ P( j |II), which thus
exhibit the correct normalizations:

∑
i P(i |I)= ∑

j P( j |II)= 1. The absolute values of these proba-
bilities are obtained by multiplying these conditional probabilities by appropriate group probability
in the system as a whole: A(λ)=[{Ai = PI P(i |I)= λAI

i }, {A j = PII P( j |II)= (1 − λ)AII
j }. They give

rise to the channel output probabilities B(λ)= A(λ)PIII(B |A)=[λB I, (1 − λ)B II].

where the first term S(P G)= H(λ) represents the group-uncertainty, while the
rest measures the mean value (group-probability weighted) of the intra-group
(conditional) probabilities for each subsystem. These contributions describe the
experiment of removing the uncertainty, and thus of acquiring the information,
about the whole system. First one identifies the group the experiment outcome
is in, which removes the S(P G) measure of uncertainty. The second term is thus
associated with the uncertainties S(AI) and (AII) of outcomes within each group,
which have to weighted in accordance with group probabilities P G .

The combination formulas for the system conditional entropy (IT-covalency)
and mutual-information (IT-ionicity) of such separated fragments read:

S(B(λ)|A(λ)) = −
∑

α= I,II

Pα(λ)
∑

k,l∈α
P(k |α )Pα(l |k ) log Pα(l |k )

=
∑

α= I,II

Pα(λ)S(Bα|Aα), (A6)

I (A(λ) : B(λ)) =
∑

α= I,II

Pα(λ)
∑

k,l∈α
P(k |α )Pα(l |k ) log

Pα(l |k )
Pα(λ)P(l |α )

=
∑

α= I,II

Pα(λ)I (Aα : Bα)+ S(P G). (A7)

Hence the grouping rule for the total bond index:



R.F. Nalewajski / Chemical bonds through probability scattering 829

N (A(λ) : B(λ)) = S(B(λ)|A(λ))+ I (A(λ) : B(λ))

= S(P G(λ))+
∑

α= I,II

Pα(λ)[S(Bα|Aα)+I (Aα : Bα)]

≡ S(P G(λ))+
∑

α= I,II

Pα(λ)N (Aα : Bα). (A8)
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